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1 Recall from last week

In last lecture, we had proved that for promise problems, QFAs are economical in number of
states, compared to DFA’s. Up to now, we depended on exactness on QFAs, but exactness will
be disturbed in the upcoming lectures.

Today’s topic What about general language recognition, without promises? In this setting,
any string can appear and the machine must respond correctly. We will try to find whether
QFAs have advantages - state economy or functionality - compared to DFA’s in general language
recognition, or not.

2 Distinguishability and Myhill-Nerode Theorem

Distinguishability. Let x and y be strings, and let L be any language. We say that x and y
are distinguishable by L if some string z exists such that exactly one of the strings xz and yz is
a member of L. If x and y are not distinguishable by any z, i.e. if for every z, we have xz ∈ L
iff yz ∈ L; we denote this with x ≡L y.

Distinguishability is an equivalence relation, and the set of all strings are divided into equiv-
alence classes by L.

Index of a language. Let L be a language. We define index of L as the maximum number of
elements in any set that are pairwise distinguishable by L.

Examples

• Let Σ1 = {0, 1}, L1 = {l| l ends with 1}. For x = 1, y = 0, z = ε ; yz ∈ L1, but xz
6∈ L1; thus x and y are distinguishable. In this context, w = 110001 and u = 11 are
indistinguishable and w ≡L1

u. Here, the strings with the same ending symbol belong to
the same equivalence class, i.e. L1 has an index of 2.

• Let Σ2 = Σ1, L2 = {l| l contains equal amounts of 1’s and 0’s}. x = 010 and y = 100
are indistinguishable by L2. Here, the strings are divided into classes with respect to the
discrepancy between 1’s and 0’s inside them; therefore, index of L2 is infinite.

• Let Σ3 = {1}, L3 = {11, 111}. The elements of {ε, 1, 11, 111, 1111} are pairwise distinguish-
able and thus form equivalence classes, but all the remaining strings are indistinguishable
from 1111 by L3.
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Lemma. If L is recognizable by a DFA with k states, then it has index at most k.

Proof. Assume the index of L is greater than k, which means that there are at least k+ 1 strings
that are pairwise distinguishable. Due to pidgeon-hole principle, at least two of the distinguish-
able strings must bring the machine to the same state. The strings become indistinguishable,
therefore the assumption contradicts itself.

Lemma. If the index of language L is a finite number k, then it is recegnized by a DFA with k
states.

Proof. Let xi = {S0, S1, . . . , Sk−1} be pairwise distinguishable by L. Let D be the DFA with

D = (Q,Σ, δ, q0, F )

Q = (q0, q1, . . . , qk−1)

δ(qi, a) −→ qj , where Sia ≡L Sj for any a ∈ Σ

F = {qi|Si ∈ L}
q0 is such that Si ≡L ε.

Every state in D corresponds to an equivalence class, thus D recognizes L.

Myhill - Nerode Theorem. A language L is regular iff it has finite index. Moreover, index
of L is the size of the smallest DFA recognizing L. Proofs are omitted.

3 Communication Complexity

Communication complexity tries to quantify the minimum number of bits to be shared between
two parties solving a certain problem. Let Alice and Bob be two individuals. Alice is given string
x, where Bob is given y. Their aim is to figure out if string xy belongs to a certain language
L. What is the smallest message that Alice can send to Bob to transfer information? The
trivial solution to this is sending the full string x to Bob, but generally there exists a shorter
message for this job. We will define one-way communication complexity of language L
as the minimum number of bits that has to be sent by Alice. We will mention some concepts
from information theory to solve this problem. Ultimately, our aim is to compare quantum and
classical communication complexity.

3.1 Information Theoretical concepts

Shannon entropy. The Shannon entropy H(B) of a set of messages, described with random
variable B coresponds to the average number of classical bits required to encode the members of
this set. For a set with n members and probability distribution pi = {p1, p2, . . . , pn}, Shannon
entropy is defined as

H(B) , −
n∑
x=1

pxlog2 px (1)

Shannon entropy can be seen as the number of bits needed to represent a given set fully. From
the definiton of H(B), we can see that H(B) is maximized when B is uniformly distributed,
in which we need log2 n bits; and zero when there is no uncertainty in B’s outcome.
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von Neumann entropy. For quantum systems, von Neumann came up with quantum version
of the entropy, since the density matrix is somewhat a probability distribution. von Neumann
entropy S(ρB) is defined as

S(ρB) , −tr(ρB log2 ρB) (2)

von Neumann entropy boils down to the number of quantum bits (qubits) needed to represent
the set. S(ρB) is maximized when the distribution is uniform, and zero when the states are
”pure”, i.e. when we have complete knowledge of the system and which state it is in.

3.2 DFA communication complexity

Consider the infinite two-dimensional matrix µ, with the rows and columns represent x and y’s,
x, y ∈ Σ∗, Σ = {0, 1}. Define µ(x, y) such that µ(x, y) = 1 iff x, y ∈ L, and 0 otherwise. Let
L = {w|w ends with 1} for now.

µ ε 0 1 00 01 10 11 . . .

ε 0 0 1 0 1 0 1 . . .
0 0 0 1 0 1 0 1 . . .
1 1 0 1 0 1 0 1 . . .
00 0 0 1 0 1 0 1 . . .
01 1 0 1 0 1 0 1 . . .
10 0 0 1 0 1 0 1 . . .
11 1 0 1 0 1 0 1 . . .
...

...
...

...
...

...
...

...
. . .

For regular L, as seen in this case, matrix µ has a finite number of distinct rows, corresponding
to equivalence classes. Any string x that can be plugged will bring the DFA into one of the finite
states. Identical rows mean indistinguishability. Alice’s job will be only telling Bob which type
of unique row x is in. The only information needed is ”X brought me to that state”. For this
particular language, we only need 1 bit because index of L is two. Similarly, for n states, we
need log2 n bits.

3.3 QFA communication complexity

Any QFA with q states can be simulated by Alice and Bob, with Alice sending the state of the
QFA after processing x, which is the procedure we applied in DFA case. Alice sends log2 q qubits
to Bob and it will be sufficient. We are interested in whether the size of QFA is smaller than
DFA or not. (Spoilers: We will show that one-way quantum communication complexity of regular
language L with index d is log2 d, then conclude that no QFA with fewer than d states exists for
this job.) If the index of regular language L is d, reduce the communication matrix to d distinct
rows. The information to be sent to Bob is the mixed state of uniformly randomly distributed
rows.
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Imagine the rows being chosen randomly bit by bit, i.e. column by column. Let p(0) be the

probability of a 0 in the first column (i.e.
#0’s in the first column

d
). Then 0 is chosen with

probability p(0) and 1 is chosen with 1− p(0). Partition the rows to the sets I0 and I1, the sets
of rows starting with 0’s and 1’s, respectively. If b is chosen for the first transmitted bit, then the
process continues with set Ib and the next column. If a complete row X is determined, let ρX
denote the density matrix of just the message about that row. Let ρt denote the density matrix
of possibly mixed message corresponding to a row, starting with t chosen uniformly among all
such rows.

The probability that a b is chosen after t is called pt(b). The associated RV is called B, and
the number of different rows beginnng with t is called rowt. Bob can decide membership of xy
in L correctly with p = 1, so he receives exact information about the row corresponding to X in
the message sent by Alice.

Holevo Theorem. Suppose Alice prepares a quantum state ρx where x = {0, 1, . . . , n} with
probability pi = {p0, p1, . . . , pn}; and then gives it to Bob. Bob performs a measurement on that
state, with measurement outcome Y . The Holevo Bound states that for any such measurement
Bob may do,

H(X : Y ) ≤ S(ρ)−
∑
x

pxS(ρx), where ρ =
∑
x

pxρx (3)

H(X : Y ) denotes mutual information between X and Y , defined as the amount of ignorance
about Y that is reduced due to knowing about X. When X and Y are independent, they have zero
mutual information, and when X and Y are identical, H(X : Y ) = H(X) = H(Y ). In our case,
we want X and Y to be identical. Because of exactness requirement,

S(ρt) ≥ pt(0)S(ρt0) + pt(1)S(ρt1) +H(B) (4)

for any t. We will show by induction that S(ρt) ≥ log2 rowt.

• Basis step: S(ρt) ≥ 0 for any completely chosen ρ, since von Neumann entropy is always
nonnegative.

• Inductive step: Start by modifying (4).

S(ρt) ≥ pt(0) log2 rowt0︸ ︷︷ ︸
≤S(ρt0 )

+pt(1) log2 rowt1︸ ︷︷ ︸
≤S(ρt1 )

+H(B) (5)

≥ pt(0) log2 [pt(0)rowt] + pt(1) log2 [pt(1)rowt] (6)

− pt(0) log2 pt(0)− pt(1) log2 pt(1)

First two terms in (6) can be reorganized as pt(i)[log2 [pt(i)rowt]] → pt(i)[log2pt(i) +
log2 rowt] so that the negative contributors from H(B) are negated.

S(ρt) ≥ [pt(0) + pt(1)] log2 rowt = log2 rowt (7)

By induction, we proved S(ρt) ≥ log2 rowt. Selecting t = ε, we find S(ρε) ≥ log2rowε = log2d,
which is same result we obtained in DFA case. Thus, we can conclude that when the QFA is
required to work with zero error, it has no state advantage over DFA for recognizing
a regular language.
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