Quantum Algorithms



Computer scientists usually find conventional expositions of quantum
computation difficult, since a lot of new concepts have to be learned to-
gether to make sense of it all. In this course, we take a different approach,
starting from a point where every computer science student is comfortable,
and introducing the new concepts one by one into the familiar framework.
We hope it will be much easier this way. So let’s start with deterministic
finite automatal
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Finite automata

1.1 Deterministic model

You already know the stuff in Sipser’s book. Note that the transitions of
a DFA can be represented as 0-1 matrices, the states can be traced with
vectors, and the execution on an input string boils down to multiplying this
vector with the corresponding sequence of those matrices.

1.2 Probabilistic model

We define real-time' probabilistic finite automata (rtPFAs) by generalizing
the matrix definition of rtDFAs to column stochastic transition matrices.
Consider a transition graph representation for a moment. It is as if compu-
tation flows through many arrows (associated with the same input symbol)
parallelly in each step. Under this “zero-error” regime (exact computation)
rtPFAs are identical to rtDFAs: Since none of these computational paths can
arrive at an incorrect response at the end, tracing any single path is suffi-
cient for seeing what the machine will do. So we convert each rtPFA matrix
(which have to contain at least one nonzero entry in each column) to a rtDFA
matrix with a 1 in just the position corresponding to the topmost nonzero
entry of the rtPFA in that column. The resulting machine is guaranteed to
recognize the same language, with the same number of states!

LA real-time machine is one that consumes its input string from left to right at a rate of
one symbol per move, and its runtime is therefore n+2, if we allow for endmarker symbols
delimiting the input.
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A machine M recognizes a language with bounded error if there exists
a number ¢ < 1/2 such that M is guaranteed to give the correct response
to any input string with probability at least 1 — . If you know to build
such a machine M1 for a language for some error bound ¢, you can build
another machine M2 for the same language with far smaller error by just
letting the M2 simulate the execution of M1 on the input string several
times, and report the majority response given by these simulations. If the
machines under consideration are real-time, this would have to be a parallel
simulation. This is a good place to recall the tensor product, which allows
one to view several parallel systems as a single combined system. For any
positive numbers m and n, and any two matrices A (which is m x n and B,
the tensor product A ® B is the matrix

11 0 Q1p al,lB s aLnB
® B = :

m,1 *° Omn am,lZg T anunlg

So when running two PFA’s with n and m states parallelly, the state
vector of the combined machine would be

a1b1
a b :
' } albm
@ : B asb; '
an, bm,
anbm

and the transition matrices of the resulting machine for each input symbol
would be obtained by taking the tensor product of the constituent machines’
transition matrices for that symbol. The parallel simulation of multiple copies
of a machine for reducing the error can be performed by constructing such
a combined machine, whose initial state is the state that corresponds to the
collection of start states of the original machines, and whose accept states are
those that correspond to collections containing a majority of accept states.

1.3 Quantum model

Quantum physics turns out to allow a more general kind of transformation
than the ones seen until now. Here are the new features: Computation
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can fork” in two different ways in this new setup. One way is probabilistic
branching, with which we are familiar from probabilistic computations. The
new way is quantum branching, in which the branches are allowed to interact,
merging or even canceling each other out in a novel manner, as we will see.
Transition matrices for a rtQFA represent these alternatives as follows: For
a k-state machine that can branch at most m ways probabilistically in any
single step, we have m kxk matrices (stack these on each other to obtain an
mkxk rectangle) for each input symbol. The matrices are allowed to contain
real numbers in the interval [-1,1] in each entry. The wellformedness condition
is that each column in these rectangles should have norm (i.e. the square root
of the sum of the squares of the numbers in it) 1, and every pair of different
columns should be orthogonal to each other (the sum of the products of the
entries in the corresponding rows should be 0). The first step of a rtQFA on
its input amounts to multiplying each of the m matrices separately with the
initial state vector (containing a 1 for the start state and 0 for the rest) and
writing the vectors that are the results of these multiplications as the children
of the initial vector in a computation tree. Every subsequent input symbol is
handled similarly, adding more generations to this tree, which is completed
with the reading of the last input symbol. The probability of acceptance is
calculated by squaring each entry corresponding to an accepting state in the
last generation and adding these squares up.

The branches of this computation tree correspond to classical probabilistic
branching. The square of the norm of a vector, say, v, in, say, the ith level
of the tree is the probability P(v) that that node is reached. Ignore all
nodes containing all-zero vectors, computation simply does not branch there.
Normalize all vectors like v in other nodes (by dividing each entry with the
norm of that vector) to obtain vy. The machine will be in the pure state
(i.e. the state vector) described by vy with probability P(v) after executing
the ith step. The overall “mixture” of states at a particular level will be best
described by something called a density matrix, to be defined soon. First,
let us formalize things a bit:

Definition 1. A real-time quantum finite automaton (rt-QFA) is a 5-tuple
{Q7 27 q, {8‘7}0627 F} where

e () is a finite set of classical states
e X is a finite input alphabet

e g< () is the initial state
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e ['C() is the set of accepting states

e {&:},cx 15 a finite collection of |Qm x |Q|-dimensional matrices, each
of which are composed of m |Q| X |Q|-dimensional matrices (operation
elements) {E;|1 <i < m} for m a positive integer.

If our knowledge of the current superposition of a quantum system is cer-
tain, then the system is said to be in a pure state. Sometimes, (e.g. during
classical probabilistic computation) we only know that the system is in pure
state |1;) with probability p; for ¢ > 1, and with the probabilities adding up
to 1. In this case, the system is said to be in a mized state.

When m=1, the conditions on the transition matrices, to be discussed
soon, turn out to require that they be unitary, and the machine gets weaker,
unable to recognize some regular languages.

All observations on quantum systems in our discussion will be done by
projective measurements. In the case of the rtQFA, this process is par-
ticularly simple, since all we wish is to see whether we have ended up in an
accept state or not. We just specify a matrix

Po=Y"la) g,

qEF

where F is the set of accept states, and for any column vector |v), (v| denotes
the conjugate transpose of |v).

Consider the following quantum finite automaton with states {qi, g2, ¢3}
where ¢; is the initial state, input alphabet {0}, m=2. For the only element
of the input alphabet, the quantum operator &, consists of matrices

q11 @ @ Q2 g3

A s 0 0 q1 (0O \/LE 0

E(],l = Q2 \/Li 0 0 Eo’g = (> 0 0 0
B\ 0 5 0 \0 0 1

Assume that the machine just performs the identity transformation on the
left input end-marker ¢. Because ¢ is the initial state, ket vector |1¢) = |q1)
= <é> represents the initial superposition.

After reading the first 0, the machine reaches new superposition [¢¢q) =

1
<\}; ) without a probabilistic branching.

0
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After reading the second 0, the machine reaches superposition ]@E@O} =

) in one probabilistic branch, and also reaches superposition \1%00) =

NI o o ol

< 5 > in another probabilistic branch. The machine is in a mixed state which
0

is the ensemble of pure states ]zﬁ¢00> and ]1%00)
%)

W(I:o>

/\
|7/~1¢00> ‘¢éj;oo>

From this point on, |1/~1¢00> and |1%00) should be considered as separate
probabilistic branches and evolution of the machine should be traced by ap-
plying the quantum operator to each probabilistic branches separately.

For a long input string, the number of probabilistic branches makes it
impossible to trace a simple finite automaton by hand. For this reason, we
introduce density matriz notation in which an n by n density matrix is
enough to keep the state information of machine for any number of proba-
bilistic and quantum branches.

Definition 2. The density matriz representation of {(p;,|1:)) | 1 <i <
M < oo} is
p="> pilthi) (il (1.1)

Given a real-time quantum machine having a set of quantum operators
{&€sex} where each &, is an operator having elements E,; for each i up to
m, the computation can be traced by density matrices for any given input
string w. In the equation below, p; denotes the system state after reading
the j'th symbol of input w, that is, w;.

pi = Ew,(pj—1) = Z ij,inAELj,m (1.2)

where py = |q1)(q1] is the initial density matrix. The transition operators
can be extended easily for any string as
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Ewo = Ew 0 &y, (1.3)
where 0 € ¥, w € ¥*, and & = I. Note that, if £ = {E;|1 < i < k} and
& ={Lj]1 < j <k}, then

£of ={EEN<i<k1<j<k} (1.4)

For the example above, the density matrix representing the machine’s

state before starting the input is p¢ = 22:1 [) (] = (é) (100) :(é § §>.
Reading the first 0 can be simulated as follows:

AW AN
peo=Epe)=| 75 0 0 000 0 0 \%)—f-
0\/%0 000 0O 0 0
0 5 0 100 0 00 5 3 0
0 0 0 000 75 00| =330
0 0 1 000 0 01 00 0

1

V3
After reading two 0’s, machine is in the state |)¢oo) = (}g ) with prob-

%
ability p; = % and it is in the state |¢&:00> = (é) with probability p, = i.
Notice that vectors [t¢o0) and |¢)g,) are normalized to obtain [¢gg) and
|1/12t00> so that ). p; = 1. Therefore, density matrix after reading two 0’s is

3 ? 1 1 1 1 1
peoo =7\ 5 (ﬁﬁ%)+1<g>(100)= :
V3

As a direct result of their definition, being the sum of normalized square
matrices reveals three important properties of density matrices:

NSNSV
B s =
s s

e Numbers on the diagonal of a density matrix are always real numbers.

e i'" diagonal entry d;; of a density matrix D is equal to the probability
of being in state ¢;.

e Sum of the diagonal elements (i.e. the trace) of a density matrix is 1.
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Using these facts, note that the probability that a rt-QFA will accept a
string w equals Tr(P,p,), where p,, is the density matrix representing the

mixed state of the machine after processing the string ¢w$, and for any square
matrix M, Tr(M) denotes the trace of M.

We are now ready to state the well-formedness condition for modern rt-
QFAs. For the transition matrices of a quantum machine to be considered
legal according to quantum physics, they have to induce a configuration
transition matrix whose columns are orthonormal for any given input string.
As an example, consider a rt-QFA M with Q = {q1,¢2,43,¢4,¢5}, m = 3
and ¥ = {a,b}. Considering the left and right end-marker symbols as well,
we have:

Q1 42 ... (5 G 9 ... (g5
q1 q1
a2 q2
: E¢.4 : E..
ds qs
q1 Q1
5¢ = 2 é’a: a2
: E¢ o : E,
ds qs
q1 Q1
4z q2
: E¢73 Ea73
ds qs
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g1 q2 ... (s 9 q2 ... (5
q1 q1
q2 q2
: Eya : Eg 1
ds q5
qQ1 q1
(c:b — QQ g$ frd q2
: Eb’g E$,2
ds qs
q1 q1
q2 q2
: Eb73 E$,3
ds ds

For any given input string x, the transition amplitudes in these matrices
induce a corresponding set of configuration transition matrices, { £y}, where
the (i, )" entry of Ej, the amplitude of the transition from configuration c;
to ¢; by branching to the k’th probabilistic path, is defined by the relevant
transition matrix whenever c; is reachable from ¢; in one step, and is zero
otherwise. The {FE}} form an operator £.

In our example, we run M on an input string “aaaba”. A configuration
of a rt-QFA is a <state, head position> pair. Our transition matrix should
represent the transition amplitudes between all possible configurations, with
all possibilities for the taken probabilistic branch. On input “aaaba’”, we have
(with ¢ and $) 7 head positions and configurations C' = {(¢,l)|q € Q,1 <
[ < 7}. In this case, £ is
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Cit Co ... Cie|

C1
Co

Cc|
&
C2

E,
Cc|
&1
Co

Es

‘e

€ is represented above by a |C|m x |C|-dimensional matrix, where C' =
{c1,¢2,...,¢701}, by concatenating each E; one under the other. The well-
formedness rule dictated by physics is that £ is a superoperator, i.e. that

> ElE =1

It can be verified that the above condition is satisfied if and only if the
columns of £ form an orthonormal set. Let ¢;, and ¢j, be two configurations
with corresponding columns v;, and vj,. For an orthonormal set to be formed,

we must have
ol v — 1 if ji = Jo,
M0 i gy #

for all such pairs.

We can ensure that all such configuration transition matrices are well-

formed by preparing the program’s matrices £ .5 such that their columns
are orthonormal.
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1.4 Quantum Machines Can Simulate Classi-
cal Machines

We prove this result for real-time machines, but the same approach is valid
for all higher models.

Theorem 1. Given a 1t-PFA P = (Qp, %, dp, qop, Fp), there exists a corre-
sponding rt-QFA Q = (Qp, %, Eyes, qop, Fp) such that

PG (w) = pp*(w)
pg’ (w) = pp’ (w)
for any given w.

Proof. For machine P, we have transition matrices P, = {p;x|j,k € Qp}
describing the transition probabilities among each pair of states of the ma-
chine, upon seeing the symbol ¢ € ¥. We construct our &, operators having
elements E, ) for every state g, such that, for a particular input o € 3;

Eav(n)i,n =V Poi,n
for all 4, and all other positions are 0. O

Do not worry about this not looking like a generalization of PFAs, it is.
Given a rtPFA P with k states, build the rtQFA Q corresponding to it by
setting m to equal k, using a separate square matrix (with zeros everywhere
except in the j'th column) in Q for the j’th column of the corresponding
matrix of P. That location will contain the square roots of the entries in P’s
j’th column.

1.5 QFA on a problem with one-sided error

Here is an example of a superiority of quantum over classical: Consider the
following language that is defined on the alphabet ¥ = {a,b}:

L = {w|the number of a’s is not equal to the number of b’s in the input string w}

We want the build a machine with one-sided error. It will say "YES” to
the members of the language with a non-zero probability, "NO” to the non-
members of the language with a p = 1.
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From our earlier knowledge, we know that complement of a language that
can be recognized by a DFA, can also be recognized by some DFA (just swap
the accept and reject states). For our convenience let us handle with the task
of recognizing;:

L = {w]|the number of a’s is equal to the number of b’s in the input string w}

We know that this is not a regular language. Therefore there is no DFA that
can recognize it. We also know that this is also the case for a PFA since
PFA with one-sided error is equivalent to DFA. (Since every member string
has a sequence of nonzero-probability transitions from the start state to an
accept state, whereas no nonmember string has such sequences, the machine
can just be seen as an NFA.) So let’s try to build a QFA.

Our 5-tuple is: @ = {q1,q2}, ¥ = {a,b}, ¢ (the initial state), F' =
{q2}(set of accept states), {E,, E,} (operators), where E, is defined as fol-

a1 ]

When we have an input string a, our new state will be E,|q1) = 2|q1) + 3]g2).

In this case, probability that we are on state ¢; and ¢y are respectively 29—5,
16

25+ @eis our accept state. Our machine will say "yes” to the to the input
string a with a non-zero probability. So far it is fine. Our only consideration
is that when we give the machine the string ab, it should say "no” with a
probability 1.

We have not yet defined a transition matrix for the symbol b. Before
constructing this matrix, let’s focus on transition matrix for the symbol a.
Columns of this matrix should be orthonormal to each other. This is rather

a special matrix, a rotation matrix. We can parameterize it as follows:

B = {cos 0 —sin 9]

sinfl cosf

where 6 is the angle we rotate our vector in counter-clockwise direction. So

every time we see an input symbol a, our state vector rotates by 6 angle in
the unit circle. When it takes an input symbol b, it should undo this rotation.
This can be easily done by defining the same transition matrix but with —6.
If we also select this € to be an irrational multiple of 7, then the machine
gives "no” answer with a probability of 1 if and only if the number of a’s are
equal to the number of b’s in the input string w.
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6,0.8)

Figure 1.1: Change of vector |¢;) when it is multiplied by a rotation matrix

Why do we need 6 to be an irrational multiple of 77 If 6 is not an
irrational multiple of m, then there is a rational number k such that k6 = 7.
So if our machine will get such an input

aa...da
—

2k
the initial state will be rotated by 2kf = 2w. We can also see that F,(0) =
E,(27). So our machine will say no with a probability of 1 although the
input string is not in our defined language.
We should also prove that for our specific choice of 6, there are no integers
a, b such that % = 3. Let us assume that there are such integers a and b.
We know that,

cosO +isinf =

and i0b = ia27. Then e = 1.

3 4.,
Z 420 =1
%+50

(34 4i)* =5°

Modulus operation is extended to complex numbers as follows:

(r+yi=q+wi modn)=(¢g=2 modn)and (w=y modn)
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If two complex numbers are equal, then we also have ¢; = ¢ mod n for any
n. We will use this to show that no such b exists that satisfy (3 + 4i)* = 5°.
However,

(34 4i)(3+ 4i) = =7+ 24i

—7+24i=3+4i mod>H
(3+4i)°=3+4i mod5

Therefore,
(3+44)" #5" mod 5

So 6 is not an irrational multiple of .

We should note that in order to implement this in real life, one would
need to have the ability to carry out the rotation by 6 precisely, without
even the slightest deviation from that real number, which is not a realistic
expectation. Furthermore, the error probability, although less than 0.5, can
be arbitrariily close to 0.5, which makes us practically unable to decide on
the status of the input when we receive a negative answer, and tensoring
multiple copies of the machine would not help, since we can not say that a
fixed number of copies guarantees a particular bound (less than 0.5) on the
error.

1.6 A Characterization of Regular Languages

Definition 3. Let x and y be strings, and let L be any language. We say
that x and y are distinguishable by L if some string z exists, whereby
exactly one of the strings xz and yz is a member of L. Otherwise, for every
string z, we have vz € L whenever yz € L, and we say that x and y are
indistinguishable by L. If x and y are indistinguishable by L, we write

r=rYy.
Proposition 1. =, is an equivalence relation on the set of all strings.

Definition 4. Let X be a set of strings. X is pairwise distinguishable
by L if every two distinct strings in X are distinguishable by L.

Definition 5. The index of L is the mazimum number of elements in any
set that is pairwise distinguishable by L.

Proposition 2. If a language L is recognizable by a DFA with k states, it
has index at most k.
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Proof. Let M be a k-state DFA that recognizes L. Suppose for a contradic-
tion that L has index greater than k. That means some set X with more
than k£ elements is pairwise distingusihable by L. Because M has k states,
the pigeonhole principle implies that X contains two distinct strings x and v,
where §(qo, ) = d(¢o, y). Here 6(q,, x) is the state that M is in after starting
in the start state ¢y and reading input string x. Then, for any string z € ¥*,
0(qo, v2) = 0(qo,yz). Therefore either both xz and yz are in L or neither
are in L. But then x and y aren’t distinguishable by L, contradicting our
assumption that X is pairwise distinguishable by L. O]

Proposition 3. If the index of a language L is a finite number k, it is
recognized by a DFA with k states.

Proof. Let X = {s1,.., s} be pairwise distinguishable by L. We construct
DFA M = (Q,%,0,q,, F') with k states recognizing L. Let Q = {q, ..., qx}
and define §(g;, a) to be g;, where s; = s;a. Note that s; = s;a for some
s; € X; otherwise, X U s;a would have k + 1 elements and would be pairwise
distinguishable by L, which would contradict the assumption that L has
index k. Let F' = {gls; € L}. Let the start state ¢, be the ¢; such that
s; =1 €, where € is the empty string. M is constructed so that, for any state
G, {819(qo, ) = ¢;} = {s|s = s;}. Hence M recognizes L.

O

Theorem 2. Myhill-Nerode Theorem A language L is reqular iff it has
finite index. Moreover, its index is the size of the smallest DFA recognizing
it.

Proof. (=) Suppose that L is regular and let k£ be the number of states in a
DFA recognizing L. Then by Proposition 2 L has index at most k.

(<) Conversely, if L has index k, then by Proposition 3 it is recognized by
a DFA with k states and thus is regular.

To show that the index of L is the size of the smallest DFA accepting it,
suppose that L’s index is exactly k. Then, by Proposition 3, there is a k-
state DFA accepting L. That is the smallest such DFA because if it were any
smaller, then it would follow from Proposition 2 that the index of L is less
than k. O
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1.7 Caveat

Zero-error computation as described here? is a fictional concept, because of
precision issues. See pages 194-195 of Nielsen and Chuang’s book for the
argument that imperfect implementations of operators can approximate the
behavior of perfect ones. “Approximate” is the key word here; which means
that an actual implementation will involve a slight change in observation
(accept/reject) probabilities, thereby destroying “exactness”, and firmly re-
minding us that very long computations require very precise implementation
of amplitudes to even sustain a nonzero error bound.

1.8 Tensor products

A machine M recognizes a language with bounded error if there exists a
number ¢ < 1/2 such that M is guaranteed to give the correct response to
any input string with probability at least 1 — e. If you know to build such
a machine M1 for a language for some error bound &, you can build another
machine M2 for the same language with far smaller error by just letting the
M2 simulate the execution of M1 on the input string several times, and report
the majority response given by these simulations. If the machines under
consideration are real-time, this would have to be a parallel simulation. This
is a good place to recall the tensor product, which allows one to view several
parallel systems as a single combined system. For any positive numbers m
and n, and any two matrices A (which is m x n and B, the tensor product
A ® B is the matrix

ayi; -+ Aip al,lB s Gl,nB
® B — . .

m,1 *° Amn am,lB e am,nB

So when running two QFA’s (or PFA’s) with n and m states parallelly,

2The reader should note that this warning also applies to computation with unbounded
error or one-sided error.
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the state vector of the combined machine would be

aq bl
a b :
' .1 ay bm
@ : B asb; ’
an, b
anbm

and the transition matrices of the resulting machine would be obtained by
taking the tensor products of the operation elements. The parallel simulation
of multiple copies of a machine for reducing the error can be performed by
constructing such a combined machine, whose initial state is the state that
corresponds to the collection of start states of the original machines, and
whose accept states are those that correspond to collections containing a
majority of accept states.

1.9 Bounded-error QFAs can only recognize
regular languages

Let us now show that no nonregular language has a bounded-error rtQFA

recognizing it. We will need to talk about “distances” between quantum

states, classical distributions, and the relations among these distances.
Define the distance between two quantum states A and B as

D(A, B) = [[A = Bl

where ||M||y, = Tr(vVMM?'). The distance D(p,q) between two classical
probability distributions p and q is just the sum of the absolute values of
the differences of the probabilities of all the corresponding events in p and
q. D(A, B) is known to be an upper bound for the distance among the
observation probability distributions from quantum states A and B.

Theorem 3. The languages recognized by rt-QF A with bounded error are
exactly the regular languages.

Proof. 1t’s clear that rt-QF A can recognize regular languages by simulat-
ing DFA. Now we will show that they can’t recognize any other language in
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bounded error setting.

Suppose a nonregular language L is recognized by rt-QFA M = {Q, %, q,
{&}, s F'} with bounded error e. Define an equivalence relation “=;” on
x,y € X such that z = y if for any 2z € ¥, xz € L if and only if yz € L.
Then, by Myhill-Nerode theorem, it is sufficient to prove that number of

equivalence classes are finite.

Now let S = {A| ||A|l,, < 1, and A is a linear operator on the vec-
tor space spanned by vectors corresponding to states in Q}. Then S is
a bounded subset from a finite-dimensional space. Let p, = &,,&, . -
&+, (o), then for every input string z, it can be seen that p, € S, because we
have |[pz|l,, = Tr(ps) = 1.

Suppose = Z, y, that is there exists a z € 3 such that xz € L and yz ¢ L.
Then we have

TT(PCLCCgZ(pI)) >1—eand Tr(Paccgz(py)) <e.
Therefore, we have

1€:(p) = E(p)lly, = [TT(Pace€=(p2)) = Tr(Pace€=(py))| +
’TT(Prejgz(px)) - Tr(Prejgz(py))|
>1—2e.

we also have ||p; — pyll,, > |€-(pz) — E-(py)l],, from the fact that applying
the same operator on two different operators doesn’t increase the distance
between them. By combining these two formulas, we get

1Pz = pylly =1 = 2¢

This formula says that there should be at least 1 — 2¢ difference between
each p, and p, satisfying « #Z; y and from the Myhill-Nerode theorem, we
know there should be infinite number of such x and 3’s so that they con-
struct infinite number of equivalence classes for L to be nonregular. Call
the representatives of these classes x1, x2,.... Since S is bounded in a finite-
dimensional space, one can extract a Cauchy sequence (a convergent sub-
sequence) from this sequence to find an x and a y such that = #; y and
vet [[pz — pyll,, < 1 —2e. This leads to a contradiction. Therefore, there
is no such nonregular language L recognized by rt-QQF A in bounded error
setting. ]
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1.10 Two Way Deterministic Finite Automata

We will distinguish between the real-time, one-way, and two-way modes
of tape head movement. A tape with real-time access is scanned by its head
in a single sweep from the left end to the right end with a new symbol scanned
at every computational step. One-way access is more general, in the sense
that pausing the head on the same square for some steps in the single left-
to-right scan is also allowed. Finally, the head can move to the left, as well
as to the right, in the case of two-way access.

Definition 6. A two-way deterministic finite automaton 2DFA is a quintu-
ple M = (Q,%,0,q0, Fu, F) where Q, 3 and qo are defined as in the case of
the usual real-time DFA, F, and F, are the sets of accept and reject states,
with the remaining states designated to be non-halting as in the case of TMs,
and § is a map from Q x X to Q x {L, R}. If 6(q,a) = (p, L) then in state q,
scanning input symbol a, the 2DFA enters state p and moves its input tape
head one square to the left. If 6(q,a) = (p, R), the 2DFA enters state p and
moves its head one square to the right.

We assume throughout the course that the input string is written on a
read-only tape, sandwiched between a left end-marker symbol and a right
end-marker symbol, which are not members of the input alphabet. Earlier
definitions of 2DFAs involved no end-markers, and the machine was said to
accept when the input head fell off the right end of the input. Our conven-
tion, with acceptance based on states, is equivalent to this from a language
recognition power point of view, though not from the point of view of state
economy. (It is important in our convention to assume that the head never
visits the squares beyond the end-markers.)

e Let L,, = {a*|k = 0mod(m)} where m > 1. The smallest DFA
recognizing L,, has m states. A 2DFA with much fewer than 2 x 3 x5 x
7x11x13x17x 19 states exists for the language Lax3x5x7x11x13x17x19):
In the first pass, while going from the left to the right, the 2DFA
checks whether the string is in Ls. In the second pass, while going
from the right to the left, 2DFA checks whether the string is in L3, and
continuing this way, it is able to determine whether the string is in L,
in 8 passes.
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1.11 The Reduction of 2DFA to 1DFA

Theorem 4. 2DFA can recognize only regular languages.

Proof. Let M be a 2DFA with set of states S recognizing language L. For
every string w € X*, define a function 7, : {sp} US — {0} US. For
s € S, Ty(s) describes the ultimate result of the motion of M when started
in state s on the rightmost symbol of w, i.e. if with these initial conditions
M ultimately leaves w from the right in the state s’ then 7,(s) = ', on the
other hand if M never leaves w, or leaves w from the left, then 7,(s) = 0.
Tw(S0) describes the result of the motion when M is started in the initial
state so on the leftmost symbol of w. Now it is easy to see that if 7,,, = 7y,
then w; =7 wy. But if n is the number of states of M there are at most
(n + 1)V distinct 7,. Then by the Myhill-Nerode Theorem, we conclude
that L is regular, since L has finite index. O]

Construction of 1DFA from 2DFA: Let M be a 2DFA recognizing
language L. We create a 1DFA M’ recognizing the same language L as
follows:

e As the state set of M’ we take different functions 7, which arise for
w e X*.

e We define the initial state of M’ to be 7. so that 7.(sp) = sp and
T(s) =0 for all s € S.

e In order to learn the function 7, for some w € ¥*, we start the machine
from each state on the rightmost symbol of w. For each new function
Tw, We add a new state to the state set of M’.We can detect infinite loops
since there are finite number of configurations (i.e. state/head-position
pairs). If the machine does not move off w, either accepting or rejecting
it in less than |w| X (n + 2) units of time, then some configuration is
repeated, and the machine has entered an infinite loop, which means
that w will not be accepted.

e Use the method of Proposition 3 to construct the transition function.

e We define the accept states of M’ by simulating the 2DFA with a mem-
ber string from each equivalence class of the relation associated with
L. If the string is accepted, the state representing the class becomes
an accept state of M'.
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1.12 2pfa’s

2-way PFA’s can recognize some nonregular languages with bounded error.
See http://www.dmtcs.org/dmtcs-ojs/index.php/dmtcs/article/view/1457 /3371,
(Section 6) for an example.

It is, however, known that 2PFA’s cannot recognize nonregular languages
in polynomial expected time:

THEOREM: For any polynomial p, 2pfa’s with expected runtime O(p(n))
recognize only the regular languages with bounded error.

Proof. One starts by defining a quantitative measure of the nonregularity
of a language L C X*. For a positive integer n, two strings w,w’ € X*
are n-dissimilar, written w »p, w', if Jw| < n, || < n, and there exists
a distinguishing string v € ¥* with |wv| < n, |[w'v| < n, and wv € L iff
w'v ¢ L. Let Np(n) be the maximum k such that there exist k distinct
strings that are pairwise ~p,,. It can be shown that

FACT (*): If L is not regular, then Np(n) > § + 1 for infinitely many n.

In the rest of the proof, one develops a technique for constructing a
Markov chain Py ,, with 2c states that models the computation of a given
2pfa A with ¢ states on the concatenated string xy, where z and y are given
strings. State 1 of the Markov chain corresponds to A being at the beginning
of its computation on the last symbol of ¢x. (Note that every 2pfa can be
modified to start here, without changing the recognized language. The non-
halting states of the modified 2pfa are {q1,qo,...,qc—1}.) For 1 < j <c—1,
state j of the Markov chain corresponds to A being in the configuration with
the machine in state ¢; and the head on the last symbol of ¢z, and state
¢+ 7 — 1 corresponds to A being in the configuration with the machine in
state ¢; and the head on the first symbol of y¢. State 2c — 1 corresponds
to a disjunction of rejection, infinite loop with the head never leaving the
region ¢z, and infinite loop within the region y¢. State 2¢ corresponds to
acceptance. The probability that Py, is absorbed in state 2c when started
in state 1 equals the probability that A accepts zy.

The proof then considers any 2pfa M that recognizes language L in ex-
pected time T'(n), and proceeds to establish a lower bound, in terms of Ny (n),
on T'(n). This is accomplished by showing that, for sufficiently large values of
n, if the desired lower bound does not exist, then there must be two pairwise
. strings w and w', with distinguishing string v, such that the Markov
chains Py, and Py, are “too close” according to a notion of closeness
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defined in It is proven that, if Py, and Py, are so close, and if it is
guaranteed that both Markov chains are absorbed to state 2c — 1 or 2¢ with
total probability 1 within expected time T'(n), then the acceptance proba-
bilities of wv and w'v must be so close that they must both be members (or
non-members) of L, contradicting their n-dissimilarity, thereby establishing
the desired bound on 7'(n). The Theorem statement is then obtained by
combining this result with Fact (*).

O

1.13 2qgfa’s (in fact, even a 2pfa plus just one
qubit) can recognize some nonregular
language with bounded error in polyno-
mial time

Here is how such a machine can recognize a nonregular language with bounded
error in polynomial expected time:

After an easy deterministic check on the input w, this 2qfa enters an
infinite loop where each iteration compares the number of a’s (i) with the
number of b’s (j). This is achieved by first rotating the qubit counterclockwise
for exactly as many times as there are a’s, then rotating it clockwise for the
b’s, and finally checking whether it has returned to its original orientation
|go). Since the rotation angle is an irrational multiple of 7, the probability
r; that the machine will reject at the line marked (I) in Figure 1.2 is zero
if and only if there are exactly as many a’s as there are b’s. Otherwise, r;
will be at least (see the paper “T'wo-way finite automata with quantum and
classical states, where the proof claims a slightly stronger result)

1 1
- - > - —.
20— 52 +1 " 2(i+7)?

We therefore conclude that any input string w with unequal numbers of a’s
and b’s which has survived the deterministic check in the beginning will be
rejected with a probability greater than ﬁ in each iteration of the infinite
loop.

If the input w has not been rejected after the rotation procedure described
above, the 2qcfa makes two consecutive random walks starting on the first



CHAPTER 1. FINITE AUTOMATA 23

Check if the input is of the form a™b™, otherwise REJECT.
LOOP:
Move the head right to the next a.
Set the qubit to |go).
While the currently scanned symbol is a:
Rotate the qubit with angle /2.
Move the head to the right.
While the currently scanned symbol is b:
Rotate the qubit with angle —/27.
Move the head to the right.
Measure the qubit. If the result is ¢;, REJECT. (I)
(The currently scanned symbol is the right end-marker.)
Repeat twice:
Move the tape head to the first input symbol.
While the currently scanned symbol is not an end-marker, do the following:
Simulate a classical coin flip. If the result is heads, move right. Otherwise, move left.
If the process ended at the right end-marker both times, and k& more coin flips all turn
out heads, goto EXIT.
Move the head to the left end-marker, and goto LOOP.
EXIT:
ACCEPT the input.

Figure 1.2: A 2qfa

input symbol, and ending at an end-marker. The probability that both these
walks will end at the right end-marker, and the subsequent coin tosses all
yield heads, leading to acceptance in this iteration of the infinite loop, is
m, and the expected runtime for this stage is O(|w|?). This means
that the machine will halt within O(]w|?) expected iterations of the loop,
leading to an overall expected runtime of O(|wl|*).

To conclude, the 2qcfa of Figure 1.2 will accept any string in {a"b" : n >
1} with probability 1. On the other hand, any w not in this language that
makes it into the loop has a rejection probability that is much larger than its
acceptance probability in each iteration, and therefore will be rejected with
great probability, where one can pull the error as near to zero as one wants
by tuning the parameter k.

1.14 The Hadamard and Toffoli gates

Until now, whenever we constructed some well-formed superoperator for our
finite automata, let’s say on 10 states, we just assumed that some kind person
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in the quantum physics lab would implement it physically, working out all the
angles, polarizations and whatnot. This is not fair, as it assumes that this job
is equally easy for all matrices. A better approach is to allow ourselves to use
only a fixed number of “elementary” operators, or “gates”, and let the burden
of specifying how all the quantum transformations will be realized in terms of
these gates fall on the programmer (i.e. us). (It is similar to what’s going on
with Boolean circuits and the “universal” sets of gates like {AND, NOT'}.) A
set of quantum gates is said to be universal if any quantum transformation on
any number of qubits can be approximated by the application of a particular
sequence of these gates on selected qubits.> Among many others, the set
consisting of the Toffoli and Hadamard gates is known to be universal:

The Hadamard operation works on a single quantum bit, with the 2X2

transition
1 1
V2 V2
1 1 ’
( v2 V2 )

and the Toffoli operation works on three qubits, with transition

0

SO OO OO o
S OO OO o O
S OO OO OO
SO OO+, O oo
SO OO, OO oo
SO OO oo
_ o OO oo oo o
O OO oo oo

(so when you perform it on three bits with values x, y and z, it transforms
them to x, y, and (z XOR (x AND y))). (I'm assuming that you are familiar
with tensor products. If you have a system of four qubits, and you apply
Hadamard to the first one, and Toffoli to the second, third and fourth ones
in that order, say, just take the tensor product of these two matrices to see
what the overall transformation on the whole system looks like.)

(Toffoli alone is known to be universal for classical computation, so if
you need to implement a classical subroutine on a quantum computer, for

3The classical algorithm described in http://arxiv.org/pdf/quant-ph/0505030v2.pdf
can be used to compile a quantum program using arbitrary single-qubit operations to
one approximating it using only operators from a fixed set efficiently.
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instance, to run it on all possible inputs simultaneously using quantum par-
allelism you can do it.) Toffoli, Hadamard and CNOT (which work on two
qubits) gates are self-inverse, and can appear in quantum circuits to represent
quantum algorithms. We are assuming that the error correction issues, which
we routinely ignore in classical computation, are solved and the matrices are
implemented perfectly.

1.15 The no-cloning theorem and BB84

The no-cloning theorem forbids a universal copying program. Proof is by
contradiction: Assume that there is a unitary transformation C' which takes
two registers and sets the second register to a perfect copy of the state of the
first register, while leaving the first register intact, i.e.

ClY) @) = [¥) @ [¢)

But then one has

C((af0) + 81)) @s)) = (a]0) + B]1)) © (a]0) + 5]1))

= a?|00) + af]01) + aB|10) + £2|11)

However, we also have

C((af0) + B1)) ® [s)) = Cal|0) @ |s)) + C(B|1) ® [s))

— (al0) ® al0)) + (8]1) @ AI1))) = 200} + /1)

So such a copier cannot exist if you are copying superpositions. (It is OK
but trivial if « or  is zero.)

Using this theorem, the BB84 quantum key distribution protocol enables
Alice and Bob to remotely decide on a one-time pad and be sure that no
eavesdropping occurred while they were doing it.

1.16 Superdense coding

Note that on a two qubit register, H(1) followed by CNOT(1,2) performs a
transform from the computational basis to the Bell basis, i.e., from |00) to
—'00%1”, from |01) to —|01>j§‘10>, from [10) to _\00)\211)) and from [10) to —|Ol>\;§‘10>.
Since both H and CNOT are self inverse, a measurement in the Bell basis is
equivalent to a CNOT(1,2), followed by a H(1), followed by a measurement
in the computational basis.

A single Hadamard does a similar thing for a one-qubit register. Bell

states are entangled and Einstein did not like this.
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The NOT (X) operation works on a single quantum bit, with the 2X2

transition
0 1
1 0 )/’

and the Z operation works on a single quantum bit, with the 2X2 transition

(0 5)

In the superdense coding protocol, Alice and Bob share a Bell pair in state
O+~ Alice then performs an operation (based on which two-bir string
she wants to send) on her qubit:

If she wants to send 00, she does nothing, and the two-qubit system is in

state LI
If she wants to send 01, she performs a NOT gate, and the two-qubit
- 01)+]10)
system 1s 1n state =y
If she wants to send 10, she performs a Z gate, and the two-qubit system
is in state M'

If she wants to send 10, she performs a Z gate followed by an X gate,
(note that the matrix is XZ, which is

0 —1
Sl
and the two-qubit system is in state %.
Alice then sends her qubit to Bob, who measures the system in the Bell

basis as described above. He sees the intended message with probability 1 in
each case.

1.17 Teleportation

Alice has a qubit (lets call it qubit 1) in state |¢)) = a|0) + |1). She also
shares a Bell pair in state % with Bob. (Lets call those qubits 2 and 3,
Alice has 2, Bob has 3.) Alice then performs the operations CNOT(1,2) and
H(1), and measures qubits 1 and 2.

Let us follow the 3-qubit system state. At the beginning:

~5(a]0) ® (|00) + [11)) + B[1) @ (|00) + [11)))

After CNOT(1,2):
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—5(a]0) ® (|00) + [11)) + B|1) @ (]10) + |01)))

After H(1):

L(a(]0) + [1)) @ (/00) + [11)) + B(10) — 1)) @ ([10) + [01)))

= 2(«[000) 4+ «[011) +|100) +a|111) 4+ 3]010) 4-5]001) — 3]110) — 3]101))

= 3(/00) ® (2]0) + BI1)) +101) @ (af1) + £10))) + [10) @ (a|0) — B[1)) +
11) @ (a[1) = 50)))

So Alice observes each two-bit string equiprobably, meaning that the
physical system that is qubit 1 is now at a completely random state. Where
has its previous state information gone?

Alice sends her measurement result to Bob.

If Bob receives 00, he does nothing.

If Bob receives 01, he does X(3).

If Bob receives 10, he does Z(3).

If Bob receives 11, he does X(3) followed by Z(3), i.e. he applies ZX to
his qubit.

In all cases, qubit 3 ends up in the state a|0) + 3|1)!

1.18 The Deutsch-Jozsa Algorithm

The Deutsch-Jozsa algorithm is a simple example of running a classical sub-
routine on a quantum computer on all possible inputs parallelly.

But what about matrices with imaginary entries? No worries. Complex
numbers can be represented by 2X2 matrices of reals. It is easy to simulate
the complex numbers with use of real numbers by replacing every complex
number a + bi with the real valued 2 x 2 matrix

()

in all our transition matrices. Our machines could have been defined with
complex amplitudes all along, with the necessary generalizations of the well-
formedness conditions.

The two most famous quantum algorithms are Grover’s and Shor’s al-
gorithms. They can be described in terms of QTMs, or in other equivalent
formalisms.
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1.19 Grover’s Search Algorithm

Determining whether a given boolean formula is satisfiable or not is an NP-
Complete problem. The corresponding language recognition problem refers
to the language below:

SAT = {f|f is a satisfiable boolean formula }

The best known classical algorithm for solving SAT runs in poly(n)2™
time where n denotes the number of boolean variables occurring in the input
formula. Grover’s algorithm to be introduced below runs in poly(n)2™? time
and hence it provides a quadratic speedup over the best known classical
algorithm for a related task.

Theorem 5. There is a quantum algorithm that given any polynomial time
computable function f :{0,1}" — {0,1} (i.e., represented as a circuit com-
puting f) as input, where f(a) = 1 for just one input string a, returns a in
poly(n)2™/? time.

Proof. Before giving the details of the algorithm we will be defining two
vectors.

- u= 27% Y e (0.1}n |w) represents the equal superposition of the vectors
for all strings of length n

- € = ) c{0,1}nwsa [W) Tepresents the sum of vectors for all strings of
length n which are mapped to 0 by the function f.

Note that |a) and e are orthogonal. The two-dimensional space spanned
by |a) and e will be useful in visualization of the working of the algorithm.

The algorithm runs on a quantum register of n + 1 + m qubits where
the last m bits are the auxiliary bits used in the quantum implementation
of the circuit part for computing f, and since f is polynomially computable,
m is not large. Therefore the algorithm will be described on the first n + 1
bits initially prepared in the state [0"*1). In the following = will be used to
denote the state of the first n qubits and ¢ will be used to denote the state
of the (n + 1)st qubit. See Algorithm 1 for the details of Grover’s search.

Step 2.2.2 can be achieved by a one-qubit operation which leaves the
n+1’st bit unchanged if it is initially 0, and multiplies it by -1 if it is 1.
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Algorithm 1 Grover’s Search Algorithm
Runs on n + 1 qubit register initially prepared to |0"0).

e Initialization: Apply Hadamard transformation on the first n qubits.

arccos( ﬁ)

e Loop: Repeat Round(m) times:

- Step 1: Reflect the vector in the first n qubits around e =
Zwe{o,l}n,w¢a |w):

- 1.1: On qubit n+1, run an X and an H gate, yielding the state
0)—[1)

2
- 1\2[ On the first n+1 qubits, compute |zo) — |z(o & f(x)))
(this has the effect of multiplying |z) by —1iff f(z) =1
- 1.3: On qubit n+1, run an H and an X gate, setting it back
to |0)
- Step 2: Reflect the vector in the first n qubits around u =
271% Zwe{OJ}" |w):
- 2.1: Apply Hadamard transformation on the first n qubits.
- 2.2: Reflect around |0™):
- 2.2.1: If the first n qubits are not all zero, flip the n+1st
qubit
- 2.2.2: If 0 = 1 then multiply |x) by —1
- 2.2.3: If the first n qubits are not all zero, flip the n+1st
qubit
- 2.3: Apply Hadamard transformation on the first n qubits.

e Measurement: Measure x and compute f(z). If the result is 1, return
x. Otherwise repeat the algorithm.
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|a)

€= ZwE{O,l}",w#a |w>
Figure 1.3: Two dimensional space spanned by |a) and e .

Rotation around a vector [¢) can be obtained by multiplication with the
matrix (2[¢) (| —I). Note that Step 2 is based on the fact that H(2|0)(0| —
IH = 2|u)(u| — I, where the letters indicate the n-fold tensored versions of
the single-bit gates with those names.

In the following parts we will be showing how Grover’s algorithm operates
on the state vectors and how it comes up with a satisfying assignment. We
will visualize the change in the state vectors represented in the two dimen-
sional space spanned by |a) and e. In doing so we will use

- X;0 to denote the state of the first n bits at the beginning of the i’th
iteration of the algorithm,

- X;1 to denote the state of the first n bits at i’th iteration after step 1
and

- X; 2 to denote the state of the first n bits at i’th iteration after step 2.

Let’s see how z evolves during the execution of the algorithm. At the be-
ginning the first n bits are initialized to the equal superposition of all strings
of length n by Hadamard transformation. Therefore we have z; 9 = u.

Then comes the first iteration of the loop where the states z;1; and
are computed as shown in Figure 1.5.

Figure 1.5 suggests that first iteration of the Grover loop which moves the
state x of the first n bits from x; ¢ to z1 2 cuts the angular distance between
a and x by 260. Figure 1.6 will show that further iterations of the loop will
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L0 =U= 2"% Zwe{o,l}n |w)

—n/2
0 ~2 / €= ZwE{O,l}“ﬂuyﬁa |w>

Figure 1.4: z is initialized to equal superposition of all strings of length n.

21,2
Ti0=1Uu u
0 \ 26
4<‘[ e | 59 / B
Z1,1 X1,1
(a) Step 1: Reflect around e (b) Step 2: Reflect around u

Figure 1.5: The first iteration of the Grover loop
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continue to do the same.

|a) |a)

L4,0 Ti2
Uu Uu
¢ __— ¢+20 —
o o+ 0 e | 6+ 20 e
T T
(a) Step 1: Reflect around e (b) Step 2: Reflect around u

Figure 1.6: The ¢’th iteration of the Grover loop

Figure 1.5 and Figure 1.6 provide sufficient means to conclude that each
iteration of the Grover loop will decrease the angle (which is originally
arccos(za75 ) )between a and z by 26 radians. In order to maximize the proba-
bility of observing a in the measurement step one should terminate the loop
at the point where distance between x and a is as small as possible.

For large values of n, the number of iterations is O(2"/2?) (the numerator
tends to /2, whereas the denominator tends to 257, since sin(x)=x for

small x). O

1.20 Shor’s Algorithm

In 1994, Peter Shor formulated a quantum algorithm for integer factoriza-
tion: Given an integer N, which is promised to be the product of at most
two prime numbers, find those primes.

The algorithm has two parts:

1. A reduction, which can be efficiently done on a classical computer, of
the factoring problem to the problem of order finding.
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2. A quantum algorithm to solve the order finding problem.

1.20.1 Factoring reduces to order finding

Algorithm 2 Reduction of factoring to order finding
Given N, find a prime factor of N:

- Step 1: Check if N is a prime itself, if so print N.

- Step 2: Check if N is a perfect power, i.e. N = CP for some C, D € Z.
If so, call this algorithm on C.

- Step 3: Randomly choose A in [2,..., N — 1]
- Step 4: g=gcd(A,N). If g > 1, call this algorithm on g.

- Step 5: Run Shor’s algorithm on A and N to obtain a number r such
that A" = 1(modN).

- Step 6: If r is odd, then go to step 3 to pick another A.
- Step 7: Let y = Az(modN), if y = —1, then go to step 3.

- Step 8: Let z = ged(y — 1, N), if z = 1 then r was not the order, go
to step 5 to try to obtain a correct r.

- Step 9: Run this algorithm on z.

For step 1, we know that PRIMES € P, so we can efficiently check the
primality of N on a classical computer. In step 2, we know that the binary
representation of our input N has length n = log(N) and if N = CP, then we
know that n = Dlog(C), therefore the value of D can be at most the length
of our input, thus it can be computed efficiently that if N is a perfect power
by exhaustively going through all candidate values of D and using binary
search to see if the D’th root for this D is an integer. For step 5, we want to
find the smallest r (order), such that r < N.

Lemma 1. For every N and y € {1,...,N — 1}, if y* = 1(modN) but
y(modN) ¢ {—1,+1}, then ged(y — 1, N) ¢ {1, N}.
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Proof. N divides y> — 1 = (y + 1)(y — 1) but does not divide neither (y-
1) nor (y+1). However, this means ged(y — 1, N) > 1, since if y-1 and N
were co-primes, then since N divides (y-1)(y+1), it would have to divide
(y+1). O

Lemma 2. For every nonprime N that is not a prime power, the probability
that a random element A of Zi; ={A € {0,..., N — 1}|gcd(A,N) = 1} has
an even order r and furthermore, A2 # —1(modN), is at least I

Proof. 1f N=P(Q where P and Q are primes, following the Chinese Remainder

Theorem, we know that choosing a random A € Z3; is equivalent to choosing

two random numbers Y,Z in Z} and Z{ respectively, and setting A to be the

unique number corresponding to the pair < Y, Z >. For every k, A*(modN)

is isomorphic to < Y* mod P, Z*¥ mod Q > and so the order of A is the

least common multiple of the orders of Y and Z modulo P and Q respectively.
Let us show that;

e A - with probability at least %, the order of Y is even : 2%.c for k > 1
and c is odd.

e B - with probability at least %, the order of Z has the form 2'.d for d
is odd and [ # k.

Proof. A - The set of numbers in Z} with odd order is a subgroup of Zj,
since if Y, Y’ have odd orders r,1’, then < Y, Y’ > = 1(modP) which means
that the order of YY’ divides the odd number rr’. Consider -1 which has
even order, so not everyone has odd order. Zj with odd order is a proper
subgroup, meaning at most % of the population will be odd. O

Proof. B - For every 1, define G; to be the subset of Z whose order modulo
Q is of the form 27.d where j <[ and d is odd. For every I, G, is a subgroup
of Gi41. Since Q is prime, the mapping z —z* (mod Q) is two-to-one and
maps Gy to Gy, so;

G
‘Gl’ > | l2+1|

Let lp name the largest number such that G, is a proper subgroup of Z,.
Then

125
|Gl0| = TQ
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So with probability exactly %, the order of a random Z € Z/, is a number of
the form 2'.d for I < l,. We conclude that for a specific k, the order being of
the form 2*.d has probability at most % m

This implies that, with probability at least %, the order of A is r =
2maz(kl) Jem(c, d), for k # 1. A2 will therefore be isomorphic to a pair which
has at least one 1 in it. We know that -1 is isomorphic to the pair < —1, —1 >,
which leads to a contradiction for the case that Az = —1(modN).

This argument can be generalized to any composite N which is not a
prime power. [

1.20.2 Order finding

We can now introduce Shor’s actual contribution, the polynomial time order
finding algorithm. (Consult the pseudocode.)

Modular exponentiation has an efficient classical algorithm.

We know the Fourier Transform:

Zf

yEZM

where w = e, an M'™ root of unity.

The quantum version does this transformation on the amplitudes, map-
ping ez, F(@)|) to S, F(a)la).

The QFT on m bits (2™ = M states) can be implemented efficiently by
noting that its action on a basis state

M—1
2mizy

e N y)
y=0
can be rewritten in terms of the action on individual bits as

(|O> + e27ri0.a:n|1>)(|0> + 627ri0.mn,1xn|1>) . (|O> + e27ri0.:c1x2---xn|1>)

|[E17"',$n>—> 2%

This formulation leads to an implementation using gates of the form

A
P 0 e )7
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Algorithm 3 Shor’s algorithm for order finding

Given numbers A and N, such that A < N, N is written in n bits, and
gcd(A, N) =1, find a number r, such that A” = 1(modN). We will call the
first m = [5log(NN)] bits of the tape ‘the first register’. The n bits after that
are called ‘the second register’. Let M = 2™.

Step 0: Initialize m+n qubits to |0™0").
Step 1: Apply Hadamards to each qubit in the first register.

T

Step 2: Compute modular exponentiation, i.e. |z)|y) —|z)|y @ (A
mod N).

Step 3: Measure the second register to obtain a .
Step 4: Apply Quantum Fourier Transform to the first register.
Step 5: Observe the first register to obtain an x. Let z=0.

Step 6: Find a rational approximation § with ged(a,b) = 1 and b <
N, that approximates the number == L accuracy. If

m—>z within T0x2m—=
this approximation satisfies A2® = 1(modN), then output 2°b and
terminate. If z > 3n, terminate. Otherwise, increment z and go to the

beginning of Step 6.
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which was shown in class. The Solovay-Kitaev theorem guarantees the exis-
tence of an algorithm which we can use to approximate these gates efficiently
in terms of our fixed set of quantum operations.

Step 6 is classical. The efficient continued fractions algorithm generates
a sequence of better and better approximations of the form a/b with bigger
and bigger values of b to the number x/2™* as long as b < N.

Step 1 computes .

—= |)|0")

after which every amplitude is set to LM

In step 2, we're doing the modular exponentiation, which transforms the
second register by computing

Y [2)|A*(modN))

TEZ N

1
vV M
After the step 3, i.e. the measurement of the second register, the first
register partially collapses

=

|0 + 1r)[yo)

1
VK *
such that x is the smallest number such that A™ = yo(modN) and K =
=]+

I
=)

After the Quantum Fourier Transform in step 4, we have

(3 T ) o

z€Zp =0

Observing the first register, we obtain a value x. There are two cases here:

1 - r divides M.

If M=rc for some integer ¢, then the absolute value of the amplitude of |x)

before the measurement is ﬁ| S o wh|. I ¢ does not divide x, then

-1 . . . .
—o w'® = 0 (since w" is a c’th root of unity by our assumptions, and
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the formula for the sum of a finite geometric series can be applied since the

: : _ =1 lry _ c=1 lrca _
denominator is not zero). If x=ca for some a, then ) ;") w"® = >~ jw"* =

;:3 wMa = ¢, For all the r possible values in {0,1,---,7 — 1} of a, the
probability that such an x will be observed is thus ¢/M=1/r.

So the observed x will satisfy x/M=a/r for some randomly selected a in
that set. Since there are Q(@) prime numbers less than r, and at most logr
of these are factors of r, we can put a lower bound on the probability that
a/r will not be "simplified”, and the continued fractions algorithm will print

T.

2 - The measured value x doesn’t satisfy that M divides xr.

Lemma 3. There exists Qi5) values x € Zy such that

1. 0 < zr'(mod M’) < {—é

2. [%J and r’ are coprime,
where v’ =r/ged(r, M) and M’ = M/gcd(r, M).

Proof. Let gcd(r,M) = d. Then ' = r/d and M’ = M/d, and * —

r'z(mod M) is a permutation of Zj,. There are at least Q(z77—) numbers

r
dlogr

in [1,..., 2] that are coprime to 1. So at least €( ) numbers x exist

) 10
such that 7'z(modM’) = xr' — |22 | M’ is in [1,..., %] and is coprime to r’,
and for these values of x, L%j and 1’ have to be coprime, since if these two
have a shared factor, that factor would be shared with r’z(mod M’) as well.

Since r’x = r’(x+cM’) modulo M’ for any ¢, we have a total of () such

numbers x € Z); with xr’(mod M’) < %. O

Lemma 4. If ¢ satisfies 0 < xr'(mod M’) < %= where r’ is a factor of r

10’
greater than 1, then the coefficient of |x) is at least Q(\/L;)

Proof. The absolute value of |z)’s amplitude is

1 K-1
lrx
E w 1.5
\/MK|lO | (1.5)

Wehave%<K§%sincexo<N<<M.
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Let § = w™. Note that g # 1, since x doesn’t satisfy that M divides xr.
Using the formula for the sum of a geometric series, (1.5) is at least

M'1-p"
and at most

@|1—5K|

M'1-58"
Letting § = 2 rulmod)

M

be the angle such that 3 = €%, the following figure
shows the relationship between these variables in the complex plane:
BK — ez’GK

\\\1 _ /BK

—1)0 1 —
o 15

1

>

-

Y

Furthermore, it can be seen from the figure below that if the angle between
the lines decreases, the length of the chord length approximates 2sin

[+

2
\

2sin(a/2)
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But then the amplitude under consideration is

o V7 i)

M sin(%)

).

Note that, if 2r/(mod M’) < -, then zr(mod M) < L. Since K < M/r,

107 10°
0 = ZWW, and 2r(mod M) < {5, we have K6/2 < 7/10. Since small
angles can be approximated with their sines, the amplitude is @(*/ﬁ; [%1) =
@(\/L;) O
Combining these two lemmas, we conclude that, with probability Q(@),

the measured value of x will satisfy zr’ —cM’' < r'/10 for ¢ = L%J, meaning
vl < o

So if we hit on the correct value of M’ (which is M /2? for some z, recalling
that M is a power of 2) by dividing M repeatedly by 2, ¢/’ won’t ”simplify
further” and will approximate /M’ closely enough that it will be the fraction
found by the continued fractions algorithm when it runs. Since r equals 27,
it will be found as a result of the subsequent checks. Since z = O(log N),

the repetitions add up to polynomial runtime.

1]
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