
CmpE 598 Lecture Notes

Kayhan Ata

April 10, 2018

1 Grover’s Algorithm

Up to now, we have dealt with algorithms that use fixed finite memory, Grover’s algorithm uses
more memory as the problem gets bigger. And there are arbitrarily many qubits to get more
power by using superposition.
Assume that we are given a program which can compute a function

f : {0, 1}n 7−→ {0, 1}

We can’t see the solution by just looking at the code due to complicated boolean formulas,
although it is easy to write such a function evaluater

f has only one n-bit input which makes it true, all other 2n−1 inputs make it false and we
want to find that particular input. The classical algorithms run poly(n)2n time while Grover’s
algorithm solves it in poly(n)2n/2, providing a quadratic improvement.
We will use n+ 1 +m qubits where m is large enough so we can compute the transformation

|xσOm〉 7−→ |x(σ ⊕ f(x))Om〉

We know from earlier lectures that classical AND and NOT gates can be represented by a
Toffoli gate which is also a quantum gate.

1

1.1 Grover’s Search Algorithm

Initialize everything to zero;
Apply Hadamard operations to first n qubits;
for i = 1...2n/2 do

Step 1. Reflect around |e〉;
1.1 Compute |xσOm〉 7−→ |x(σ ⊕ f(x))Om〉;
1.2 If n+1st = 1 then multiply vector by −1, otherwise do nothing ;
1.3 Compute |xσOm〉 7−→ |x(σ ⊕ f(x))Om〉;

Step 2. Reflect around |u〉;
2.1 Apply Hadamard to first n qubits;
2.2 Reflect around |0〉;
2.2.1 If first n qubits are not all zero then flip the n+1st qubit;
2.2.2 If n+1st qubit is 1 then multiply by −1;
2.2.3 If first n qubits are not all zero then flip the n+1st qubit ;
2.3 Apply Hadamard to first n qubits;

end
Measure the first n qubits, check if the value "a" you read makes f(a) = 1.

Applying Hadamard operation to n qubits originally at 0’s causes an equiprobable superposition
of all states corresponding to all n bit strings, as an example for n = 2[

1/
√
2 1/

√
2

1/
√
2 −1/

√
2

](
1
0

)
=

(
1/
√
2

1/
√
2

)
Tensor product of the two vector gives

(
1/
√
2

1/
√
2

)
⊗
(

1/
√
2

1/
√
2

)
=


1/2
1/2
1/2
1/2


Therefore the probabilities to see |00〉, |01〉, |10〉 and |11〉 are all 1/2.
In Step 1.2, the n+1st qubit is multiplied by −1 if it is 1, therefore the composite state becomes

a1
a2
...
an

⊗−
(

0
1

)
= −


a1
a2
...
an

⊗
(

0
1

)

In Step 2.2.1, for the n+1st qubit 0 becomes 1 and 1 becomes 0.

1.2 Graphical Description of the Algorithm

Let u = 1
2n/2

∑
x∈{0,1}

|x〉 and let "a" be the special input that we are looking for.

Define "e" as the equal superposition of all 2n−1 basis other than "a", that is the probability
to see all 2n−1 vectors on "e" are equal but the probability to see "a" is zero.

|e〉 =
∑
x 6=a

|x〉

2

If we write u in an explicit form;

u =
1

2n/2
|00...0〉+ 1

2n/2
|00...1〉+ ...+

1

2n/2
|a〉+ ...+

1

2n/2
|11...1〉

After Step 1, the sign of "a" changes but the rest of the terms remain same, therefore vector
"u" is reflected around "e"

u =
1

2n/2
|00...0〉+ 1

2n/2
|00...1〉+ ...− 1

2n/2
|a〉+ ...+

1

2n/2
|11...1〉

In Step 2.1, by applying Hadamard operation the coordinate transformation is done from |u〉
to |0n〉. Then the vector is reflected around |0n〉 in Step 2.2. Finally, in Step 2.3 the coordinate
transformation is done from |0n〉 to |u〉 by Hadamard operation. After Step 2, the vector is
reflected around "u".

3

After several iterations "u" gets closer to "a" as seen in the figure

We know α initially, therefore we know how many times to do iterations. If n is big, then 1/2n/2

is small and for small angles sinα ≈ α. Initially "u" needs to cover

π

2
− arcsin

(
1

2n/2

)
in order to get close to "a" and in each iteration it covers

2arcsin

(
1

2n/2

)
Therefore O(2n/2) iterations are enough.

2 Shor’s Algorithm for Factorization

Given a positive integer find its factors.
There exists a fast classical algorithm for detecting whether the number is prime. If so, problem
solved.
There exists another classical algorithm for detecting whether the number is a power, ab for
a,b is integer and b > 1:

x = ab

logx = bloga =⇒ b can not be big

If you can find a factor, you can find all other factors using the same method again and again.
Shor’s algorithm enables an exponential improvement over classical algorithms. Next lecture
we will assume we are given number pq where p and q are primes.

4

