CMPESH98.01

Lecture 1 - Notes

Kemal Berk Kocabagl, 2013400045, kberkkocabagliQgmail.com, authored the first 3 sections
Baris Can Esmer, 2014400033, bariscan.esmer@gmail.com, authored the last 2 sections

February 11, 2018

1 CMPE 350 overview

Starting point of the class: CMPE350 (Finite Automata)

Input — Output
Algorithm

In the finite automata setting, we have a finite (fixed) memory. No matter how
large the input is, the machine is forced to use that fixed memory to produce the output.
In addition, the machine should read the input from left to right just once. So, n steps
for n symbols.

(Note: In other traditional algorithms where memory is not a constraint, the space
and time complexity is observed to compare the performance.)

For example, if we have k bits in our machine, there are
2F states — finite!

A finite automaton receives an input string such as “aaabbab” and outputs either
“Yes” or “No”, dividing the input space into 2 disjoint sets. The set of strings for which
the machine says “Yes” constitutes a language.

2 Real-time Deterministic Finite Automata (Real-time DFA)
2.1 Classical DFA
A DFA can be defined as the following:

M=(Q,> 6,45 F)

where

() = the state set
Z = the input alphabet

d = the transition function (the actual algorithm)
gs = the initial (starting) state
F = the set of accept states

For example, one finite automaton could be:


mailto:kberkkocabagli@gmail.com
mailto:bariscan.esmer@gmail.com

b Q:{Q17q2}

> ={a,b}

start 4> 6(q1,a) = g2

6(q1,0) = @1

(g2, a) = g2

6(q2,0) = @1

DFA Diagram 4 = ¢
F={q}

This machine accepts any string that ends with an “a”. All strings that go by this rule
is the language recognized by this machine.

2.2 Matrix Representation of DFA

A finite automaton can also be represented by matrices, which provides us with compu-
tational benefits. Converting the previous DFA into matrix notation, we get:

0 0 11 1

where M, represents the transitions resulting from receiving an “a” as input and M,
“b” as input. The rows are the next state while the columns are the current state. There-
fore, M,[1,0] = 1 because when the current state is ¢; and the input is “a”, the next state
according to d is ¢o.

The initial (starting) state ¢, is a vector and since ¢; is the initial state in our example,
the first entry of the vector which corresponds to ¢; is 1.

Now, if we would like to find if the machine will accept the string “aabaab”, we need

to compute: MyM, MMM, Myqs = [(1)]

Since the machine ends up in the state: g1 ¢ F, it does not accept “aabaab”. This is

(1P}

what we expected as we designed it so that it only accepts strings that end with an “a”.
Notice that the matrices we formed have two important special properties:
1. They consist of only zeros and ones.

2. The sum of the numbers along each column is one.

3 Real-time Probabilistic Finite Automata (Real-time PFA)

Deterministic Automata is in fact a special case of Probabilistic Automata, where all the
probabilities are either 0 or 1. In Probabilistic Automata, each transition is associated
with a probability € [0, 1].
Let’s look at an example:



Q = {Qh Q27(J3}

> ={a}

o(q1,a,q1) = 2/3
a,1/3 a,1/2 oqr,a,q2) = 1/3

start e@ 6(q1,a,q3) =0
a,1/2 (g2, a,q1) = 1/2

0. 2/3 al (g2, a,q2) =0
(g2, a,q3) = 1/2

PFA Diagram 6(g3,a,q1) =0

6(g3,a,q2) =0

6(g3,a,q3) =

ds = q1

F = {g}

If we would like to calculate the probability of this machine saying “Yes” to the input
string “aa”, we could form a binary tree that covers all possibilities.

Summing the probabilities of the paths that end at {¢|¢ € Q, F'}, we get the answer 2/9.
As seen above, the process is not that practical. Matrices come to rescue when handling
probabilistic finite automata.

In the matrix notation, the same problem can be solved in the following way:

2/3 1/2 0 1
M,=11/3 0 0| ,qg=10
1 1/2 1 0

11/18

Observe M M,qs = | 4/18

3/18

(corresponding states of the bold numbers are in F)
Therefore, the probability of the machine accepting “aa” is 4/18 = 2/9.

Question: If we are dealing with probabilities of accepting strings, then what is the
language associated with a PFA?



4 Error Tolerance in PFAs

In probabilistic machines, there are many bureaucratic procedures that determine a ma-
chine recognizing a language. DFA’s either accept or reject a particular string, no matter
how many times it operates on the input. However, unlike the DFA’s, a PFA can reject
and accept a string at different runs. So, how do we define the set of accepted strings
(language) of a PFA 7

We can define which strings are accepted by a PFA in terms of an error notion. Suppose
A is a PFA, we can define L to be the language recognized by A in many ways. Some of
them are,

Zero Error : A accepts every string in set L with probability 1 and rejects every other
string with probability 1

One-Sided Error : A accepts every string in L with non-zero probability and rejects
every other string with probability 1.

Bounded Error : A gives the correct response (“yes” for members of L, “no” for others)
with probability greater than a, where a > 1/2

Theorem 4.1. Zero error PFA and DFA recognize the same set of languages.

Proof. In a zero error PFA | at a given state any transition is ”same”. By same, it is meant
that there is absolutely no difference which transition is taken, in terms of the response of
automaton. Because by the definition of zero error, either all paths beginning from start
state end up either at one of the accept states (if the particular string is an element of L)
or at one of the reject states (if the string is not an element of L.) Therefore for each state,
we can delete all transitions but one and make its probability 1. As stated before, this does
not change anything in terms of the response of automaton, the languages recognized by
this new PFA is the same. But now, this just constructed automaton is basically a DFA,
all transitions between states are deterministic. Therefore the set of languages recognized
by a zero error PFA is the same as the ones recognized by a DFA. O

Theorem 4.2. PFA with one-sided error and DFA recognize the same set of languages.

Proof. Suppose there exists a PFA P, recognizing language L with one-sided error as
defined above. A string s is recognized by P if and only if there exists a path beginning
from the start state to one of the accept states, by following the transitions for each
letter of s. We already know that NFA’s have that exact property. Therefore from P we
can construct an NFA (non-deterministic finite automata) P’, using the same state set
and transitions (of course, without the probabilities). One can easily see that a string is
accepted by P if and only if it is accepted by P’. Since NFA’s recognize the same set of
languages as DFA’S,E] we conclude that PFA with one-sided error also recognizes the same
set of languages. O

starta 1/3

a 1/2 start

a, 1/3

a,1/2

PFA - with one sided error Constructed NFA

LA proof can be found in [this link


http://cs.umw.edu/~finlayson/class/spring18/cpsc326/notes/05-nfa2.html

In the light of the two theorems above, we can intuitively say that “making mistakes” is
better in terms of computational power. Restricting the automaton from making mistakes
makes the probabilistic approach useless. Furthermore, making mistakes is not so bad
as it seems at first glance, because one can always repeat the process multiple times and
probability of majority of the outcomes being wrong is very low.

5 Introduction to Quantum Algorithms

According to the Bohr atom model, electrons are always moving in specific circular paths
(orbits). However quantum mechanical model of the atom states that it is possible for an
electron to be in many places at the same time, which is called quantum superposition of
different states. With observation, it collapses into one state.

If we make use of this matter and build Quantum Automata, do these new machines
recognize languages that PFA’s were not able to 7 Is there a computational advantage ?

For these new type of automata, we should update our matrix/vector models. For
example,

1/V3
1/V3
_1/\/3

is a valid vector in this system. There is a negative number so we can not think of these
numbers as probabilities. What we do instead is to interpret them as square roots of
probabilities. After squaring the numbers, we get probabilities and by summing them we
get 1. The transition matrices should also be modified such that the end vector is valid.

If quantum physics is a generalization of classical physics, then so must be our new
machines compared to PFA’s. This means every PFA could be converted to a Quantum
Automaton.



	CMPE 350 overview
	Real-time Deterministic Finite Automata (Real-time DFA)
	Classical DFA
	Matrix Representation of DFA

	Real-time Probabilistic Finite Automata (Real-time PFA)
	Error Tolerance in PFAs
	Introduction to Quantum Algorithms

