
1

CMPE 598 - Lecture Notes

Mert Kalaylıoğlu

April 24, 2018

1. Shor’s Algorithm for Factorization
Given a positive integer, find its factors.

There exists a fast classical algorithm for detecting whether the number is prime.

If so, problem solved.

There exists a fast classical algorithm for detecting whether the number is a power

(i.e. of the form ab for b > 1).

x = ab

logx = b ∗ loga so b cannot be bigger than logx.

Binary Search: If you can find a factor, you can find all other factors as well

using the same method repeatedly.

Assume you are given a number pq where p and q are primes.

We want to factor a large integer N.

• FACTORING is reduced to finding a non-trivial square root of 1 modulo N.

y2 ≡ 1 (modN) (y ∈ 1, 2, ..., N − 1)

if N = 15

trivial square roots of 1 (mod 15)

12 ≡ 1 (mod15) not exciting

(−1)2 ≡ 1 (mod15) not exciting

142 ≡ 1 (mod15) not exciting

−1 ≡ 14 (mod15)

non-trivial square root of 1 (mod 15)

42 ≡ 1 (mod15)

If y is a non-trivial square root of 1 mod N,

Then N divides y2 − 1 = (y + 1)(y − 1), but N does not divide neither y − 1

2

nor y + 1. So this means that gcd(y − 1, N) > 1 because if y − 1 and N were

relatively prime, then since N divides (y−1)(y+1), it would have to divide (y+1).

• Finding such a root is reduced to computing the order of a random integer

modulo N.

Pick a random number X (mod N).

The order of X (mod N) is the smallest number r such that Xr ≡ 1 (modN).

Example: The order of 2 mod 15 is 4. 21 = 2, 22 = 4, 23 = 8, 24 = 1, 25 = 2, 26 =

4, 27 = 8, 28 = 1, ...

• The order of an integer is precisely the period of a particular periodic superposi-

tion.

”Period = Order”

• And, periods of superpositions can be found by the quantum FFT.

Classical FFT’s input is an M-dimensional, complex valued vector α (where M is

a power of 2, say 2m) and its output is an M-dimensional, complex valued vector β;


β0

β1
...

βM−1

 =
1√
M



1 1 1 . . . 1

1 W W 2 . . . WM−1

1 W 2 W 4 . . . W 2(M−1)

1 W 3 W 6 . . . W 3(M−1)

...
...

...
. . .

...

1 W (M−1) W 2(M−1) . . . W (M−1)(M−1)




α0

α1

...

αM−1

 (1)

where W is a complex M th root of unity.

FFT runs in O(M ∗ logM) steps.

3

Input: A superposition of m = log M qubits |α>=
∑M−1

j=0 αj |j>.


α0

α1

...

αM−1

 = α0



1

0

0
...

0


+ α1



0

1

0
...

0


+ α2



0

0

1
...

0


+ ...+ αM−1



0

0

0
...

1


(2)

Method: We’ll use O(m2) quantum operations to obtain the superposition.

|β>=
∑M−1

j=0 βj |j>

Output: A random m-bit number j (i.e. 0 ≤ j ≤ M − 1), from the probability

distribution Pr[j] = |βj|2.

Suppose the input to quantum Fourier sampling is periodic with period k, for

some k that divides M. Then the output will be a multiple of M
k

, and it is equally likely

to be any of the k multiples of M
k

.

|α> =


α0

α1

...

αM−1

 (3)

|α> is such that αj = αi whenever i = j mod k where k is a particular integer

that divides M. So there are M
k

repetitions of same sequence (α0, α1, ..., αk−1) of length

k.

And suppose exactly one of these k numbers is non-zero, say αj.

Suppose the vector |α>= (α0, α1, ..., αM−1)
T is periodic with period k with no

offset (that is, the non-zero terms are α0, αk, α2k, ...). Thus |α>=
∑M

k
−1

j=0

√
k
M
|jk>.

Claim:

|β>=
1√
k

k−1∑
j=0

|jM
k
> (4)

4

In the input vector, the coefficient of αl is
√

k
M

if k divides l, and zero otherwise.

The jth coefficient |β> is

βj =
1√
M

M−1∑
l=0

wjlαl =

√
k

M

M
k
−1∑

i=0

wjik (5)

So this sum is the geometric series 1+wjk+w2jk+... containing M
k

terms and with

ratio wjk. There are two cases. If the ratio is exactly 1, which happens if jk ≡ 0modM ,

then the sum of the series is just the number of terms. If the ratio isn’t 1, apply the

usual formula for geometric series to find that the sum is

1− wjk(Mk)

1− wjk
=

1− wjM

1− wjk
= 0 (6)

So βj = 1√
k

is M divides jk, and is zero otherwise. Also works (with little modi-

fication) for the case where the offset is non-zero.

Suppose s independent samples are drawn uniformly from {0, M
k
, 2M
k
, ..., (k−1)M

k
}.

Then, with probability at least 1− k
2s

, the greatest common divisor of these samples is

M
k

.

Proof: The only way this can fail is if all samples are multiples of jM
k

, for some

j > 1. So, fix any integer j ≥ 2. The chance that a particular sample is a multiple of

jM
k

is at most 1
j
≤ 1

2
, so the chance that all samples are multiples of jM

k
is at most

1
2s

. The probability that this bad thing will happen for some j ≤ k is at most k 1
2s

,

since these are k candidates for the number j.

How does the classical FFT work?

”Divide & Conquer”

from input (α0, α1, ..., αM−1)
T to output (β0, β1, ..., βM−1)

T

5

w
M
2 = −1.

In the quantum version, the input is now encoded in the 2m amplitudes of m =

logM qubits. So the decomposition of the inputs to evens and odds is determined

by the least significant qubit. We will design a quantum circuit (subroutine) QFTM .

QFTM
2

will be applied to the remaining m-1 qubits.

H =

 1√
2

1√
2

1√
2
− 1√

2

 (7)

Other lines =

1 0

0 1

 (8)

6

A =



1 0 0 . . . 0

0 1 0 . . . 0

0 0 1 . . . 0
...

0 0 0 . . . 1


⊗

 1√
2

1√
2

1√
2
− 1√

2

 =



1√
2

1√
2

0 0 . . . 0 0

1√
2
− 1√

2
0 0 . . . 0 0

0 0 1√
2

1√
2

. . . 0 0

0 0 1√
2
− 1√

2
. . . 0 0

...

0 0 0 0 . . . 1√
2

1√
2

0 0 0 0 . . . 1√
2
− 1√

2


(9)

01100 0 → even

01100 1 → odd αy0 : even

αy1 : odd

 (10)

A

αy0
αy1

 =

αy0+αy1√
2

αy0−αy1√
2

 (11)

For each j, an operation is done in the classical FFT on the (M
2

+ j)th wire. If j

is represented by the m-1 bits j1, j2, ..., jm−1, then wj =
∏m−1

l=1 w2jl . Ex: m = 3,

m - 1 = 2, j2j1.

Gate with 2 qubits =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 W 2j

 (12)

