
CMPE598 - Lecture 10

Bahar Hilal Yüksel

April 24, 2018

We want to factor a large integer N.

• FACTORING is reduced to finding a nontrivial square root of 1 modulo N.

y2 ≡ 1(modN)

if N = 15

trivial square roots of 1 modulo N


12 ≡ 1(mod15) not exciting

(−1)2 ≡ 1(mod15) not exciting

142 ≡ 1(mod15) not exciting

(1)

nontrivial square root of 1 modulo N ⇐ 42 ≡ 1(mod15)

If y is a nontrivial square root of 1 mod N, then N divides y2− 1 = (y+ 1)(y− 1), but N does not divide
neither (y + 1) nor (y − 1).

So, this means that gcd(y − 1, N)>1 because if y − 1 and N were relatively prime, then since N divides
(y + 1)(y − 1) it would have to divide (y + 1).

If we can find y, then we can calculate gcd(y − 1, N) and if it is bigger than 1, it means we found a
nontrivial factor of N. Now, all we have to do is finding a y.

• Finding such a root is reduced to computing the order of a random integer modulo N.

Pick a random number x (mod N)
The order of x (mod N) is the smallest number r such that

xr ≡ 1(modN)

ex:
21 ≡ 2(mod15)
22 ≡ 4(mod15)
23 ≡ 8(mod15)
24 ≡ 1(mod15) ⇒ The order of 2 mod15 is 4.

• The order of an integer is precisely the period of a particular periodic superposition.

21 22 23 24 25 26 27 28 ...
2, 4, 8, 1, 2, 4, 8, 1, ... ⇒ periodic sequence

period = order = 4

• And, periods of superpositions can be found by quantum FFT.

Classical FFT’s input is on M-dimensional, complex-valued vector α (where M is a power of 2, say 2m).
Output is an M-dimensional, complex-valued vector β.

1



β0
β1
.
.
.
.
.
.

βM−1


=

1√
M



1 1 1 1 . . . 1
1 ω ω2 ω3 . . . ωM−1

1 ω2 ω4 ω6 . . . ω2(M−1)

1 ω3 ω6 ω9 . . . ω3(M−1)

...
...

...
...

...
...

...
...

1 ωj ω2j ω3j . . . ωj(M−1)

...
...

...
...

...
...

...
...

1 ωM−1 ω2(M−1) ω3(M−1) . . . ω(M−1)(M−1)





α0

α1

.

.

.

.

.

.
αM−1



where ω is a complex M th root of unity.

FFT runs in O(MlogM) steps.

Quantum Fourier Sampling

Input: A superposition of m = logM qubits |α >=
∑M+1
j=0 αj |j >.

Method: We’ll use O(m2) quantum operations to obtain the superposition |β >=
∑M−1
j=0 βj |j >.

Output: A random m-bit number j (i.e. 0 ≤ j ≤M−1), from the probability distribution Pr[j] = |βj |2.
α0

α1

α2

...
αM−1

 = α0


1
0
0
...
0

+ α1


0
1
0
...
0

+ α2


0
0
1
...
0

+ · · ·+ αM−1


0
0
0
...
1



Suppose the input to quantum Fourier sampling is periodic with period k, for some k that divides M.

|α >=


α0

α1

α2

...
αM−1

 is such that αi = αj whenever i = j mod k where k is a particular integer that divides

M. So there are M
k repetitions of some sequence (α0, α0, . . . , αM−1) of input k.

AND SUPPOSE EXACTLY ONE OF THE K NUMBERS IS NONZERO, say αj .

⇒ Then the output will be a multiple of M
k , and it is equally likely to be any of the k multiplies of M

k .

So, the vector β will contain 1’s only in the places which correspond to multiples of M
k , where k is the

period that we are looking for.

It is possible to make some probabilistic experiments on this setup to understand what M
k is, and since

we already know M, then we can calculate k.

Suppose the vector |α >= (α0, α1, . . . , αM−1)T is periodic with period k with no offset (that is, the
nonzero terms are α0, αk, α2k, . . .). Thus,

|α >=

M
k −1∑
j=0

√
k

M
|jk >

Claim:

|β >=
1√
k

k−1∑
j=0

|jM
k

>

2

In the input vector, the coeffient of αl is
√

k
M if k divides l and zero otherwise.

The jth coefficient of |β > is

βj =
1√
M

M−1∑
l=0

ωjlαl =

√
k

M

M
k −1∑
i=0

ωjik

So, this sum is the geometric series 1 + ωjk + ω2jk + . . . containing M
k terms and with ratio ωjk. There

are two cases. If the ratio is exactly 1, which happens if jk = 0modM , then the sum of the series is just the
number of terms. If the ratio is not 1, apply the usual formula for geometric series to find that the sum is

1− ωjk(Mk)

1− ωjk
=

1− ωMj

1− ωjk
= 0

So βj = 1√
k

if M divides jk, and is zero otherwise.

This was only for the case with no offset. Also works(with little modification) for the case where the
offset is nonzero.

Suppose s independent samples are drawn uniformly from

{0, M
k
,

2M

k
, . . . ,

(k − 1)M

k
}

Then, with probability at least 1− k
2s , the greatest common divisor of these samples is M

k .

Proof: The only way this can fail is if all the samples are multiples of jMk , for some j > 1. So, fix any
integer j ≥ 2.

The chance that a particular sample is a multiple of jMk is at most 1
j ≤

1
2 . So, the chance that ALL

samples are multiples of jMk is at most 1
2s .

The probability that this bad thing will happen for some j ≤ k is at most k 1
2s , since there are k candi-

dates for the number j.

How does the classical FFT work?

from input (α0, α1, . . . , αM−1)T to output (β0, β1, . . . , βM−1)T

3

FFTM

FFTM/2

α0

α2

α4
.........

αM−2

βj

FFTM/2

α1

α3

α5
............αM−1

βj+M/2

m
ul

tip
ly

w
ith
α
j

multiply with αj+M/2

+

+

In the quantum version, the input now encoded in the 2m amplitudes of m=logM qubits. So, the de-
composition of the inputs to evens and odds is determined by the least significant qubit. We will design a
quantum circuit(subroutine) QFTM . QFTM/2 will be applied to the remaining m-1 qubits.

QFTM

QFTM/2

M
-1

q
u

b
it

s

least significant bit H

multiplication


1 0 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0
...

. . .

0 0 0 . . . 1

⊗
(

1√
2

1√
2

1√
2
− 1√

2

)
=



1√
2

1√
2

0 0 . . . 0 0
1√
2
− 1√

2
0 0 . . . 0 0

0 0 1√
2

1√
2

. . . 0 0

0 0 1√
2
− 1√

2
. . . 0 0

...
...

...
0 0 0 0 . . . 1√

2
1√
2

0 0 0 0 . . . 1√
2
− 1√

2



4



1√
2

1√
2

1√
2
− 1√

2
1√
2

1√
2

1√
2
− 1√

2

. . .
1√
2

1√
2

1√
2
− 1√

2




αy0
αy1


=


αy0+αy1√

2
αy0−αy1√

2



⇒ Multiplication must happen before the H.

For each j, an operation is done in the classical FFT on the (M2 + j)th wire.

If j is represented by the m-1 bits j1, j2, . . . , jm−1, then ωj =
∏m−1
l=1 ω2jl .

Ex: m=3, m-1=2, j2, j1.

For the lth qubit, consider ω2l

Qubit positions from least significant to most significant:

(0, 1, 2, 3)
(ω1, ω2, ω4, ω8)

ω1010 = ω2.ω8

QFTM

QFTM/2

M
-1

q
u

b
it

s

least significant bit H


1 0 0 0
0 1 0 0
0 0 1 0

0 0 0 ω2j



5

