CMPE 598 - Lecture Notes

Asim Giimiig

March 27, 2018

1 Two-Way Finite Automata

A two-way deterministic finite automaton (2DFA) is
a generalized DFA which can read the input string
in two directions. It has a reading hat which can ¢liln|plult]|$
move one character left or right over the input string.

The string has two delimiters ¢ and $, which are right—enc‘l marker
not elements of the input alphabet X, and respec-

tively showing the beginning and the end of the reading hat
string.

left-end marker
Transition functions: Q x ¥ — Q x {L, R}
System reads a character in a state, then decides to go left or right and switches its state.
State set: There are halting states (accept or reject) in which the reading hat reaches to the
right-end and automaton stops, and non-halting states where it does not.

Can it recognize non-regular languages? No, 2DFAs and DFAs are equivalent in the
sense of only recognizing regular languages. But they might have some practicalities over DFAs.
Example: Consider the language L,, = {a’ | i is a multiple of m} and take m =2-3-5- ... 19.
You can build a 2DFA which traverses the string and for one prime factor of m such as 5, it counts
the string length in modulo 5 and checks its divisibility by using only 5 states. By doing this for
every factor of m, L,, can be recognized with only 2 + 3 .. + 19 states, whereas a DFA needs at
least m number of states.

A proof to their equivalence: Let M be a 2DFA with set of states S recognizing L.
For every string w € ¥*, define a function 7,,: {So} US — {0} U S.
This function will serve the purpose of showing how the machine behaves when it crosses the

boundary between w and z in an input like

For any state s € S, 7,(s) shows the ultimate result of the motion of M when it starts on
the right-most symbol of w in state s, i.e. if M ultimately leaves w after some steps, from the
right-most symbol into the state s’, then 7,(s) = &'.

If M never leaves w or leaves it from the left, then 7,(s) = 0.

Tw(S0) has the special meaning of which state the machine lands in when it leaves w for the
first time from the right-most symbol i.e. when M is started on the initial state on the left most
symbol of w, eventually it leaves w from the right-most symbol into the state s’ where 7,(5) = ¢’
or it never leaves w where 7,,(59) = 0.

Now consider two input strings wiz and wez. If M accepts a string, the marker ends up at
right-end symbol $, so it leaves w from its right-most symbol at least once and lands in the left-
most symbol of z. Let 7,,, and 7, denote the "table"s of 7 meaning all values of 7 for any element
from {50} US. If 7, = Tw, for these two strings w; and ws, then they land in the left-most symbol
of z and into the same state, as their tables are the same. So, M either accepts or rejects both,
which means for all z € L, w1z = wez <= w1 =[, ws.

Note also that, if there are k states in S, there can be only (k + 1)¥*+1 distinct tables,
so there are only a finite number of different 7 functions!

Using Myhill-Nerode theorem = Ounly regular languages are recognized by 2DFAs.

2 Two-way Probabilistic Finite Automata

Let us build a 2PFA which recognizes {a™b" | n > 0} with error bound ¢ for any desired £ > 0.

Let z = % The machine splits into three paths when it starts.
All paths check whether an "a" appears after a "b" while doing their other jobs, and reject if this
happens.

Path 1 moves on with probability = and restarts with probability 1 — x (i.e. goes back to ¢ and
switches to the initial state) when reading symbols a or b.
After reading the right-end marker, it accepts with probability 1.

Path 2 moves on with probability x2, restarts with probability 1 — 22 when reading symbol a.
On b’s, it goes on with probability 1.
At the right-end marker, it rejects with probability § and restarts with 1 — §.

Path 3 is just like Path 2, but transitions between a and b are interchanged.

If the input is of the form a™b™, then the accept and reject probabilites in the first round -before
any restart- are as follows:

1

13(1CC _ gl,mxn Prej _ $2n _ %(me + x2n)

If m =n,
Prej %(IQm + I2m)
= = £

1
Poce ngm

If m # n, without loss of generality, m = n + d for d > 0. Then,

= —_—— —_—_—_— < —
Prej c- ($2n+2d + 272”) c l‘2d + 1 e —

Pace ox2ntd 2 2 4_2
g

Substitute x = %:

= Face <e
Prej
So this 2PFA can recognize this non-regular language with an error bound &, but there is a
catch: its runtime is bad (Frey). For any polynomial p, 2PFA with expected runtime 6(p(n))
recognize only the regular languages with bounded error!

