
CMPE 598 - Lecture Notes

Asım Gümüş

March 27, 2018

1 Two-Way Finite Automata

¢ i n p u t $ ...

reading hat

left-end marker

right-end marker

A two-way deterministic finite automaton (2DFA) is
a generalized DFA which can read the input string
in two directions. It has a reading hat which can
move one character left or right over the input string.
The string has two delimiters ¢ and $, which are
not elements of the input alphabet Σ, and respec-
tively showing the beginning and the end of the
string.

Transition functions: Q× Σ→ Q× {L,R}
System reads a character in a state, then decides to go left or right and switches its state.
State set: There are halting states (accept or reject) in which the reading hat reaches to the
right-end and automaton stops, and non-halting states where it does not.

Can it recognize non-regular languages? No, 2DFAs and DFAs are equivalent in the
sense of only recognizing regular languages. But they might have some practicalities over DFAs.
Example: Consider the language Lm = {ai | i is a multiple of m} and take m = 2 · 3 · 5 · ... · 19.
You can build a 2DFA which traverses the string and for one prime factor of m such as 5, it counts
the string length in modulo 5 and checks its divisibility by using only 5 states. By doing this for
every factor of m, Lm can be recognized with only 2 + 3 .. + 19 states, whereas a DFA needs at
least m number of states.

A proof to their equivalence: Let M be a 2DFA with set of states S recognizing L.
For every string w ∈ Σ∗, define a function τw : {s0} ∪ S → {0} ∪ S.
This function will serve the purpose of showing how the machine behaves when it crosses the
boundary between w and z in an input like ¢ w z $

For any state s ∈ S, τw(s) shows the ultimate result of the motion of M when it starts on
the right-most symbol of w in state s, i.e. if M ultimately leaves w after some steps, from the
right-most symbol into the state s′, then τw(s) = s′.
If M never leaves w or leaves it from the left, then τw(s) = 0.

τw(s0) has the special meaning of which state the machine lands in when it leaves w for the
first time from the right-most symbol i.e. when M is started on the initial state on the left most
symbol of w, eventually it leaves w from the right-most symbol into the state s′ where τw(s0) = s′.
or it never leaves w where τw(s0) = 0.

Now consider two input strings w1z and w2z. If M accepts a string, the marker ends up at
right-end symbol $, so it leaves w from its right-most symbol at least once and lands in the left-
most symbol of z. Let τw1

and τw2
denote the "table"s of τ meaning all values of τ for any element

from {s0}∪S. If τw1
= τw2

for these two strings w1 and w2, then they land in the left-most symbol
of z and into the same state, as their tables are the same. So, M either accepts or rejects both,
which means for all z ∈ L, w1z ≡L w2z ⇐⇒ w1 ≡L w2.

1



Note also that, if there are k states in S, there can be only (k + 1)k+1 distinct tables,
so there are only a finite number of different τ functions!

Using Myhill-Nerode theorem =⇒ Only regular languages are recognized by 2DFAs.

2 Two-way Probabilistic Finite Automata
Let us build a 2PFA which recognizes {anbn | n ≥ 0} with error bound ε for any desired ε > 0.

Let x = ε2

2 . The machine splits into three paths when it starts.
All paths check whether an "a" appears after a "b" while doing their other jobs, and reject if this
happens.

Path 1 moves on with probability x and restarts with probability 1− x (i.e. goes back to ¢ and
switches to the initial state) when reading symbols a or b.
After reading the right-end marker, it accepts with probability 1.

Path 2 moves on with probability x2, restarts with probability 1 − x2 when reading symbol a.
On b’s, it goes on with probability 1.
At the right-end marker, it rejects with probability ε

2 and restarts with 1− ε
2 .

Path 3 is just like Path 2, but transitions between a and b are interchanged.

If the input is of the form ambn, then the accept and reject probabilites in the first round -before
any restart- are as follows:

Pacc =
1

3
xmxn Prej =

1

3
· ε

2
x2m +

1

3
· ε

2
x2n =

ε

6
(x2m + x2n)

If m = n,
Prej

Pacc
=

ε
6 (x2m + x2m)

1
3x

2m
= ε

.
If m 6= n, without loss of generality, m = n+ d for d > 0. Then,

Pacc

Prej
=

2x2n+d

ε · (x2n+2d + x2n)
=

2

ε
· xd

x2d + 1
<

2

ε
xd ≤ 2

ε
x

Substitute x = ε2

2 :

=⇒ Pacc

Prej
< ε

So this 2PFA can recognize this non-regular language with an error bound ε, but there is a
catch: its runtime is bad (Frey). For any polynomial p, 2PFA with expected runtime θ(p(n))
recognize only the regular languages with bounded error!

2


