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Signal Processing First 

Lecture 8 

Sampling & Aliasing 
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READING ASSIGNMENTS 

 This Lecture: 

 Chap 4, Sections 4-1 and 4-2 

 Replaces Ch 4 in DSP First, pp. 83-94 

 

 Other Reading: 

 Recitation: Strobe Demo (Sect 4-3) 

 Next Lecture: Chap. 4 Sects. 4-4 and 4-5 



2/15/2017 © 2003, JH McClellan & RW Schafer 3 

LECTURE OBJECTIVES 

 SAMPLING can cause ALIASING 

 Nyquist/Shannon Sampling Theorem 

 Sampling Rate (fs) > 2fmax(Signal bandwidth) 

 

 Spectrum for digital signals, x[n] 

 Normalized Frequency 
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SYSTEMS Process Signals 

 PROCESSING GOALS: 

 We need to change x(t) into y(t) for many 

engineering applications: 

 For example, more BASS, image deblurring, 

denoising, etc 

SYSTEM 
x(t) y(t) 
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System IMPLEMENTATION 

 DIGITAL/MICROPROCESSOR 
 Convert x(t) to numbers stored in memory 

ELECTRONICS 
x(t) y(t) 

COMPUTER D-to-A A-to-D 
x(t) y(t) y[n] x[n] 

 ANALOG/ELECTRONIC: 
 Circuits: resistors, capacitors, op-amps 
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SAMPLING x(t) 

 SAMPLING PROCESS 
 Convert x(t) to numbers x[n] 

 “n” is an integer; x[n] is a sequence of values 

 Think of “n” as the storage address in memory 

 UNIFORM SAMPLING at t = nTs 
 IDEAL:  x[n] = x(nTs) 

A-to-D 
x(t) x[n] 
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SAMPLING RATE, fs 

 SAMPLING RATE (fs) 

 fs =1/Ts  
 NUMBER of SAMPLES PER SECOND 

 Ts = 125 microsec  fs = 8000 samples/sec 
• UNITS ARE HERTZ:  8000 Hz  

 

 UNIFORM SAMPLING at   t = nTs = n/fs 

 IDEAL:  x[n] = x(nTs)=x(n/fs) 

A-to-D 
x(t) x[n]=x(nTs) 



2/15/2017 © 2003, JH McClellan & RW Schafer 8 

fs = 2 kHz

fs = 500Hz

Hz100f
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SAMPLING THEOREM 

 HOW OFTEN ? 

 DEPENDS on FREQUENCY of SINUSOID 

 ANSWERED by NYQUIST/SHANNON Theorem 

 ALSO DEPENDS on “RECONSTRUCTION” 



2/15/2017 © 2003, JH McClellan & RW Schafer 10 

Reconstruction?  Which One? 

)4.0cos(][ nnx 
)4.2cos()4.0cos(

integer an is  When
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Given the samples, draw a sinusoid through the values 
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STORING DIGITAL SOUND 

 x[n] is a SAMPLED SINUSOID 

 A list of numbers stored in memory 

 EXAMPLE: audio CD 

 CD rate is 44,100 samples per second 

 16-bit samples 

 Stereo uses 2 channels 

 Number of bytes for 1 minute is 

 2 X (16/8) X 60 X 44100 = 10.584 Mbytes 
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DISCRETE-TIME SINUSOID 

 Change x(t) into x[n]      DERIVATION 
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DEFINE DIGITAL FREQUENCY 
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DIGITAL FREQUENCY 

       VARIES from 0 to 2, as f varies from 

0 to the sampling frequency 

 UNITS are radians, not  rad/sec 

 DIGITAL FREQUENCY is NORMALIZED 
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SPECTRUM (DIGITAL) 
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SPECTRUM (DIGITAL) ??? 

ˆ w = 2p
f

fs

fs =100 Hz ˆ w 
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x[n] is zero frequency??? 
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The REST of the STORY 

 Spectrum of x[n] has more than one line for 

each complex exponential 

 Called ALIASING 

 MANY SPECTRAL LINES 

 

 SPECTRUM is PERIODIC with period = 2 
 Because  

Acos( ˆ w n+ j) = Acos(( ˆ w + 2p)n +j )
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ALIASING DERIVATION 

 Other Frequencies give the same 
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ALIASING DERIVATION–2 

 Other Frequencies give the same 
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ALIASING CONCLUSIONS 

 ADDING fs or 2fs or –fs to the FREQ of x(t) 

gives exactly the same x[n] 

 The samples, x[n] = x(n/ fs ) are EXACTLY 

THE SAME VALUES 

 

 GIVEN x[n], WE CAN’T DISTINGUISH fo 

FROM (fo + fs ) or (fo + 2fs ) 
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NORMALIZED FREQUENCY 

 DIGITAL FREQUENCY 
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SPECTRUM for x[n] 

 PLOT versus NORMALIZED FREQUENCY 

 INCLUDE ALL SPECTRUM LINES 

 ALIASES 

 ADD MULTIPLES of 2 

 SUBTRACT MULTIPLES of 2 

 FOLDED ALIASES 

 (to be discussed later) 

 ALIASES of NEGATIVE FREQS 
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SPECTRUM (MORE LINES) 
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SPECTRUM (ALIASING CASE) 

1
2 X

*

–0.5 

1
2 X

–1.5 

1
2 X

0.5 2.5 –2.5 
ˆ w 

1
2 X1

2 X
* 1

2 X
*

1.5 

))80/)(100(2cos(][   nAnx

fs = 80Hz

sf

f
 2ˆ 



2/15/2017 © 2003, JH McClellan & RW Schafer 24 

SAMPLING GUI (con2dis) 
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SPECTRUM (FOLDING CASE) 
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