
Little Bits of MATLAB
James H. McClellan
School of ECE
Georgia Tech

27-March-1997

ECE-2025
ECE-4270

©1989–2001 James H. McClellan.
This material was prepared by and is the property of the author. It should not be reproduced or
distributed without the written permission of James H. McClellan.

MATLAB is a trademark of Mathworks, Inc.
• The default is version 3.5 of MATLAB; version 4.1 changes are indicated when necessary.

Contents

1 Introduction 1
1.1 New Features in Version 4 . 1

2 Essentials of Operating MATLAB 3
2.1 Overview of Basic Capabilities . 3
2.2 Quick Startup . 4

2.2.1 Demonstrations . 5
2.2.2 Help . 5

2.3 Three Windows . 7
2.3.1 Differences in PC vs. UNIX vs. Mac . 7

2.4 Data, Variables, and Expressions . 7
2.4.1 Constructing Matrices . 8
2.4.2 The Data Workspace . 9
2.4.3 Row & Column Vectors . 10
2.4.4 Formatting Numbers . 10
2.4.5 Complex Numbers in Matrices . 11
2.4.6 The Colon : Operator . 12
2.4.7 Special Constants . 13
2.4.8 Text Strings . 14

2.5 Plotting Graphs . 15
2.5.1 1-D Plotting . 15
2.5.2 Horizontal Scaling and Labeling . 16
2.5.3 Two-Dimensional Plotting . 17
2.5.4 Multiple Plots Per Page . 17
2.5.5 Controlling the Graphics . 18

2.6 User Interface . 19
2.6.1 Disk Files . 19
2.6.2 Importing and Exporting Data . 20
2.6.3 Diary: Recording a User’s Session . 20

3 Vectors, Vectors, Everywhere 21
3.1 Matrix and Array Operations . 21

3.1.1 Matrix Operations . 21
3.1.2 Simultaneous Linear Equations . 22
3.1.3 Element-by-Element Array Operations 22
3.1.4 Relational and Logical Operators . 23
3.1.5 Scalar Math Functions . 24

i

ii CONTENTS

3.1.6 Quantization Functions . 25
3.1.7 Vector Math Functions . 26
3.1.8 Matrix Functions & Decompositions . 26
3.1.9 Outer Products . 27
3.1.10 SubMatrices . 27
3.1.11 Empty Matrices . 28
3.1.12 Special Matrices . 28
3.1.13 Advanced Numerical Functions . 28

4 Programming in MATLAB 31
4.1 Editing ASCII M-files . 31
4.2 Creating Your Own Scripts . 32
4.3 Creating Your Own Functions . 33

4.3.1 Programming Primitives . 35
4.3.2 Avoid FOR Loops . 35
4.3.3 Vectorizing Logical Operations . 36
4.3.4 Composition of Functions . 38
4.3.5 Programming Style . 38

4.4 The COLON Operator . 38
4.5 Debugging an M-file . 39

4.5.1 Version 4 Debugger . 40
4.5.2 Timing Loops and Functions . 40

4.6 Programming Tips . 42
4.6.1 Avoid FOR Loops . 42
4.6.2 Vectorize . 42
4.6.3 The COLON Operator . 44
4.6.4 Matrix Operations . 44
4.6.5 Signal Matrix Convention . 45
4.6.6 Polynomials . 45
4.6.7 Self-Documentation via HELP . 45

5 Signal Processing in MATLAB 47
5.1 MATLAB Signal Processing Tool Box . 47

5.1.1 Version 3 of SP Toolbox . 48
5.1.2 Signal Vector Convention . 48
5.1.3 Signal Matrix Convention . 48

5.2 Polynomials in Signals & Systems . 48
5.3 Important Functions for DSP . 50

5.3.1 Spectrum Analysis: fft & freqz . 50
5.3.2 A DTFT Function . 51
5.3.3 Frequency Response: Rational Form . 52
5.3.4 Windows . 55
5.3.5 filter . 55
5.3.6 Filter Design . 56
5.3.7 Statistical Signal Processing Functions 58
5.3.8 Advanced DSP Functions . 58
5.3.9 Miscellaneous Utility Functions . 59

beyza
Vurgu

beyza
Vurgu

CONTENTS iii

6 Control Toolbox 61
6.1 Feedback System . 61

6.1.1 Transfer Functions . 61
6.1.2 Partial Fractions . 61

6.2 State-Space Representation . 61
6.2.1 Transfer Functions from State-Space . 61
6.2.2 Conversion Between Forms . 61
6.2.3 Digital Control . 62

6.3 Time-Domain Response: Continuous-Time . 62
6.3.1 Simulated Response of Differential Equation 62
6.3.2 Step Response . 62
6.3.3 Impulse Response . 62
6.3.4 Ramp Response . 62

6.4 Time-Domain Response: Discrete-Time . 62
6.4.1 Digital Filtering . 62
6.4.2 Step Response . 62
6.4.3 Impulse Response . 62

6.5 Frequency Response . 62
6.5.1 Bode Plots . 62

6.6 Nyquist Plots . 63
6.7 Root Locus . 63

6.7.1 Stability Tests . 63
6.8 Linear Quadratic State Estimation . 63
6.9 Optimization Toolbox . 63

6.9.1 Least-Squares Inverse . 63
6.9.2 FMINS . 63
6.9.3 Non-Linear Minimization . 63
6.9.4 Non-negative Least-Squares . 63
6.9.5 Linear Programming . 63

7 Symbolic Toolbox 65

8 Quick Reference Guide 67
8.1 Summary of Available Help Screens . 67
8.2 Summary of Frequently Used Commands . 69
8.3 Help Screens for Frequently Used Commands . 70

9 MATLAB Commands by Function 81

10 Signal Processing Functions by Group 89

iv CONTENTS

(Blank page)

Chapter 1

Introduction

The MATLAB software environment can take you by surprise. It is extremely easy to learn, and is
best tackled by doing rather than by just reading. Try new things and see the results; more than
likely, you can be doing very sophisticated operations within a matter of hours.

If there is one watchword, it would be vector—you must create expressions and programs that
state the operation in a vector form. Previous experience in a high level language, such as FORTRAN
or C, can actually be detrimental, because such languages force programming at a rather low level.
Instead, it is best to think in the “language” of linear algebra. Soon, the syntax will become second
nature, and MATLAB will become an essential part of your mathematical and signal processing
experimentation.

The emphasis of this book is on the concepts involved in using MATLAB efficiently. Therefore,
programming techniques will be stressed after a quick introduction to the basics of the MATLAB
language.

1.1 New Features in Version 4
At the present time, version 4.1 os MATLAB is available for most platforms. The Student Versionwill
be updated to version 4 very soon. Therefore, some material in this book needs updating. Since the
book was prepared primarily for students who might be using the Student Version in their courses,
the presentation reflects version 3.5. In all cases, an effort has been made to point out differences
that are significant for those users who are presently using version 4.1. Fortunately the basics of
MATLAB are identical between version 3.5 and version 4.1, so the reader can be confident that any
MATLAB skills learned in the context of version 3.5 are still applicable to version 4.1. The main
differences lie in the area of plotting, since version 4 has greatly enhanced graphics capabilities.

Comment

This presentation reflects one person’s usage and experience, so the emphasis may be skewed. After
five years of answering questions and teaching courses with considerable MATLAB usage, certain
patterns have emerged. One theme that seems significant but eludes most students is the dictum to
“vectorize.” So this book is dedicated to that one goal— NO LOOPS!!!

1

2 CHAPTER 1. INTRODUCTION

Chapter 2

Essentials of Operating MATLAB

This chapter presents the basic operation of MATLAB. In reality, the best way to learn a software
environment like MATLAB is simply to use it, and constantly try new things. An advantage to
MATLAB is that the start-up time is minimal; quite likely you can be doing very sophisticated
operations within a matter of hours.

If there is one watchword, it would be vector—you must create expressions and programs that
state the operation in a vector form. Previous experience in a high level language, such as FORTRAN
or C, can actually be detrimental, because such languages force programming at a rather low level.
Instead, it is best to think in the “language” of matrices and linear algebra. Soon, the syntax will
become second nature, and MATLAB will become an essential part of your mathematical and signal
processing experimentation.

2.1 Overview of Basic Capabilities

MATLAB is an interactive mathematics program for performing scientific and engineering calcula-
tions. It is an excellent tool for doing the matrix manipulations commonly found in linear algebra.
Four features stand out:

1. All computations are carried out in double-precision arithmetic to guarantee high accuracy.
Variables can be complex-valued, if necessary.

2. There is a huge set of mathematical functions, e.g., linear equation solvers, eigenvalues,
singular values, etc.

3. There is a rich set of plotting capabilities that are extremely useful when viewing vectors as
signals. A variety of 2-D plotting functions also exist.

4. MATLAB is also a programming environment, so the user can extend its functional capabilities
by writing new modules. One set, authored at Georgia Tech, contains a number of popular
DSP signal modeling techniques, and DSP plotting formats. (On the HP worstations, these
are found in a sub-directory called gatech; in the Vectra Lab, they can be found in the
GT-MATLAB download area.)

Thus MATLAB provides a versatile interactive computing environment for mathematics and engi-
neering. Applications such as DSP (digital signal processing) and control systems are two primary
ones that will be treated in this book.

3

4 CHAPTER 2. ESSENTIALS OF OPERATING MATLAB

2.2 Quick Startup

This section is for those who only want to know the bareminimum before starting to run the software.
Since the program contains on-line help and several demonstrations, it is possible to learn the syntax
“on the fly” by just trying things that seem natural in a mathematical sense.

Some of the information on starting MATLAB may be site-dependent, so please consult your
site-dependent source to find out which files must be loaded before you can begin. Assuming that all
the software is present, running MATLAB is simple: you type MATLAB and after the program starts,
it will display the prompt >>. All commands to MATLAB are typed after the prompt. When you
are ready to quit, type quit or exit to return to the operating system. If it is necessary to abort a
MATLAB function without quitting, try ctl-C.

Command Line Recall

MATLAB has a command line recall and editing facility. This is extremely valuable when similar
commands must be executed over and over. The implementation of this feature has varied somewhat
on different machines. With version 4 and the later revisions of version 3.5, the arrow keys are used.
Furthermore, “emacs” commands are also aupported. On a Macintosh the cut and paste facility can
also be used, and was the only mechanism in early revs of version 3.5.

Shell Escape

If a command is preceded with an exclamation point !, then it is taken to be a shell command to the
operating system. For example, to invoke an editor.

Some of the often used commands are given in the following two tables.

General Commands
ˆC control-C aborts a function

clear clear workspace of all variables
demo run demos (menu driven)
exit terminate (same as quit)
help help on a specific topic
length vector length (row or column)
quit terminate (same as exit)
size matrix row and column dimensions

type filename list out an M-file
who list names of variables in workspace
whos list names and sizes of all variables

2.2. QUICK STARTUP 5

Special Characters: Punctuation
= assignment

[] used to form vectors and matrices
from scalars and other matrices

() arithmetic expression precedence grouping
. decimal point
.. continue statement to next line
, separator for multiple commands on one line
, separator for row elements, subscripts & function args
; SUPPRESS PRINTING of output

when command ends with ;
; end rows of a matrix
: subscripting, vector generation
% comment delimiter, rest of line is comment
! execute operating system command

2.2.1 Demonstrations

MATLAB has a built-in set of demonstration programs. You may wish to try some of them immedi-
ately, or you may wish to read the following summary of MATLAB features and then try the demos.
In either case, simply type demo at the MATLAB prompt, and follow the menu.

>> demo

------- MATLAB Demonstrations -------

1) Introduction to basic MATLAB commands.
2) Some of the graphics capabilities.
3) Predict 1990 population.
4) A square wave is the sum of odd harmonics.
5) The convolution theorem.
6) Reduced row echelon form and eigenvalue movies.
7) Pretty 3-d mesh surfaces.
8) Ordinary differential equations.
9) Interesting plots!
10) Benchmarks.
11) Spectral analysis using FFTs.
12) Design recursive digital filters.

0) Quit.

Select a demo number:

2.2.2 Help

MATLAB has a very effective on-line help facility. It is absolutely essential that the user become
accustomed to using the on-line help. To get a list of all MATLAB features simply type

6 CHAPTER 2. ESSENTIALS OF OPERATING MATLAB

>> help

The result will be several screenfuls, listing all features for which on-line help is available. A copy
of the list is given in the Chapter 4 of this write-up.

A related operator is type which will list out the entire contents of an M-file. This is useful
when you need to see which algorithm was used for a particular M-file, or when you are trying to
learn the programming style of experts who have coded the primary functions inside MATLAB. You
cannot type out the contents of a built-in function., such as fft because it is compiled from C
code, not interpreted from an ASCII M-file.

In version 4, there is a searching capability called lookfor. This allows the user to search the
entire database of MATLAB help to find all entries that contain a given string. For example, if you
want all functions that refer to the FFT, enter lookfor fft.

⇒ Note: In Chapter 4 is a printout of the help message for many commonly used functions. To
obtain a listing of a help message on a specific topic, such as the FFT, type

>> help fft

The result will be a short description of how to use the command.

>>help fft

FFT FFT(X) is the discrete Fourier transform of vector X. If the
length of X is a power of two, a fast radix-2 fast-Fourier
transform algorithm is used. If the length of X is not a
power of two, a slower non-power-of-two algorithm is employed.
FFT(X,N) is the N-point FFT, padded with zeros if X has less
than N points and truncated if it has more.
If X is a matrix, the FFT operation is applied to each column.
See also IFFT, FFT2, and IFFT2.

It is also possible to ask for help on language constructs such as if statements, or on syntax issues
such as the colon operator :.

>> help if

IF Conditionally execute statements. The simple form is:
IF variable, statements END

The statements are executed if the variable has all
non-zero elements. The variable is usually the result of
expr rop expr where rop is ==, <, >, <=, >=, or ˜=.
For example:

IF I == J,
A(I,J) = 2;

ELSEIF ABS(I-J) == 1,
A(I,J) = -1;

ELSE
A(I,J) = 0;

END

2.3. THREE WINDOWS 7

>> %---

>> help :

: Colon. Used in subscripts, FOR iterations and possibly
elsewhere.
J:K is the same as [J, J+1, ..., K]
J:K is empty if J > K.
J:I:K is the same as [J, J+I, J+2I, ..., K]
J:I:K is empty if I > 0 and J > K or if I < 0 and J < K.
The colon notation can be used to pick out selected rows,
columns and elements of vectors and matrices.
A(:) is all the elements of A, regarded as a single
column. On the left side of an assignment statement, A(:)
fills A, preserving its shape from before.
A(:,J) is the J-th column of A
A(J:K) is A(J),A(J+1),...,A(K)
A(:,J:K) is A(:,J),A(:,J+1),...,A(:,K) and so on.
For the use of the colon in the FOR statement, See FOR.

Be advised that the help facility uses an environment variable calledMATLABPATH to search through
a set of directories; your present working directory should be on this path, so that files you create
will be incorporated into the MATLAB help system.

2.3 Three Windows

1. Command

2. Graphics

3. Edit

4. Help (not really a separate window)

2.3.1 Differences in PC vs. UNIX vs. Mac

2.4 Data, Variables, and Expressions

The name MATLAB stands for matrix laboratory, and this is appropriate because the one and only
data object in MATLAB is a rectangular numerical matrix with real or complex elements. Indeed,
scalars (single numbers) are actually 1×1 matrices; and even character strings are treated as vectors
of characters.

Most MATLAB statements are assignments of the form:

variable = expression

The expression is usually a function that takes inputs and returns outputs. There are no dimension
statements or type declarations in MATLAB. Storage for data and variables is allocated automatically
in response to MATLAB statements. There is, of course, limited storage on any computer. (About
300 Kbytes are available for storing data on a PC; much more on other systems.)

8 CHAPTER 2. ESSENTIALS OF OPERATING MATLAB

MATLAB is an interpreted language, i.e., expressions typed by the user are immediately evaluated
by the MATLAB system, and the results are displayed to the user. The response to the user can be
suppressed by placing a semicolon at the end of the MATLAB input statement.

2.4.1 Constructing Matrices

Matrices can be entered explicitly by typing a list of numbers, surrounded by square brackets [].
The elements within a row must be separated by spaces or commas, and each row terminated with a
semicolon ; or a carriage return. For example, the statement

>> [1 4 7; 2 5 8; 3 6 9]

results in the output

ans =
1 4 7
2 5 8
3 6 9

Since no array name was given, the result is returned in the generic variable ans, which always
holds the result of the last unassigned MATLAB operation.

The equals sign = is used to assign names to scalars and matrices resulting from MATLAB
statements. Thus typing A=[1 4 7; 2 5 8; 3 6 9] assigns the symbol A to the matrix on
the right-hand side of the =. The matrix is saved in MATLAB’s workspace and is subsequently
referred to by the symbol A. The variable can be removed the workspace by doing clear A.

Since the end of a row can also be indicated by a carriage return, another way to enter the matrix
A is

>> A=[1 4 7
2 5 8
3 6 9]

If a row of data is too long to fit on one line, when you reach the end of a line, you can type two
periods .. followed by carriage return and continue entering data on the next line.

The echo in MATLAB can be annoying, especially for very large matrices. A semicolon used at
the end of a MATLAB statement will suppress typing of the result. Thus,

>> A=[1 4 7; 2 5 8; 3 6 9];

creates the same matrix as above, but does not type it out.
Sometimes we may wish to access a single matrix entry. This is done by explicitly referring to

the element by its row and column index. Indexing starts at 1, so A(3,2) is the element in the 3rd
row and 2nd column. For example, to assign the value 2.718 × 10−5 to the second element of the
third row of the matrix A, we would type A(3,2)=2.718e-05;. Note the use of exponential
notation (also found in FORTRAN and C) to specify this last constant.

2.4. DATA, VARIABLES, AND EXPRESSIONS 9

2.4.2 The Data Workspace

At any time in a MATLAB session, you may obtain a summary of the entire workspace by typing
whos. The resulting list gives the variable names and their dimensions., together with the amount
of free memory.

>> whos
Name Size Total Complex

A 3 by 3 9 No
j 1 by 1 2 Yes
pi 1 by 1 1 No
x 4 by 1 4 No
y 1 by 4 4 No

Grand total is (20 * 8) = 160 bytes,

leaving 314256 bytes of memory free.

To find out the size of a specific variable, type size(A), which will return a row vector with two
entries, the first being the number of rows in A, the second the number of columns. Once defined, a
variable remains in the workspace until it is explicitly removed by the clear command, e.g.,

>> clear A

Saving the Workspace

All the variables in the workspace can be saved to a disk file using the save command. The resulting
file can be reloaded with the load command. For example, the command save project creates
a file called project.mat that can be read by the command load project. The file created
by save is a binary file, but it contains a header that allows it to be read by MATLAB on any
machine—format conversions are made, if necessary.

Workspace Commands
clear remove all variables from the workspace
load load variable(s) from .mat file or ASCII file
pack compact memory (garbage collection?)

equivalent to save, clear, load
save save variable(s) to a .mat file
who list names of variables in workspace
whos list names and sizes of all variables

Garbage Collection

Any system such as MATLAB that maintains an environment with variables continually being cre-
ated and destroyed must have a form of “garbage collection” to remove dead (or unused) space.
Unfortunately, MATLAB has no automatic garbage collection mechanism. The function clear
allows the user to manage his workspace and do his own house cleaning. Even that is not enough,
since other temporary arrays might be created and destroyed whenever M-files are run. In place of

10 CHAPTER 2. ESSENTIALS OF OPERATING MATLAB

garbage collection, there is a MATLAB function called pack which saves all the variables in the
entire workspace, clears the workspace, and then loads the saved variables. This is time-consuming,
but it is the best way to get some room to work if memory limits start to hinder your progress.

2.4.3 Row & Column Vectors

As is common terminology, a matrix with only one column is called a column vector. Column
vectors can be entered as follows:

>> x=[1
2
3
4]

or

>> x = [1;2;3;4]

both of which result in the output

x =
1
2
3
4

As before, the vector x is saved by name for future use. A row vector is a matrix with only one
row. We can obtain a row vector by entering it explicitly as described above, or by “transposing” a
column vector, y=x’. For the vector x above, the transposed output will be

y =
1 2 3 4

Notice that we use two symbols, a period followed by a prime, y=x.’, to do the transpose, because
the “prime” operator by itself takes the complex-conjugate transpose of a matrix; the “period”
suppresses the conjugate operation.

The i-th element of a row vector y is, strictly speaking, y(1,i), but we can simply refer to it
as y(i). Similarly, the i-th element of a column vector x can be picked with either x(i,1) or
x(i).

The length of a (row or column) vector can be obtained with the function length(x) which is
short hand for max(size(x)).

2.4.4 Formatting Numbers

One last comment on numbers concerns the format for display of numbers. For example, the value
of the constant π is obtained by typing the name pi in MATLAB. This results in

>> pi
ans =

3.1416

2.4. DATA, VARIABLES, AND EXPRESSIONS 11

Note that only 5 significant digits are displayed, but since MATLAB actually does double precision
floating point arithmetic, we would expect that many more digits are actually used to represent each
number. To see numbers with full precision, use the long format:

>> format long
>> pi
ans =

3.14159265358979

After changing to format long in a MATLAB session, all numbers would be displayed with ap-
proximately 15 significant digits. To go back to the short format typeformat short. Other output
formats are available, consulthelp format formore information. For example,format compact
will make the output to the terminal single-spaced; and format bank is useful for balancing your
checkbook.

2.4.5 Complex Numbers in Matrices

MATLAB handles complex numbers as easily as real numbers, but in order to enter them we need to
create the basic imaginary number, i.e.,

√
−1. For example, if you like to call it J you can make the

assignment:

>> J=sqrt(-1)
J =

0 + 1.0000i

Note that MATLAB always uses the symbol i when printing the imaginary base no matter what
you call it, so to prevent confusion you may better off to go along with MATLAB and call it i.
Furthermore, newer versions of MATLAB start up with the symbols, i and j already defined as√

−1. Since MATLAB is case sensitive the symbols J and j represent different variables.
Now we can create complex numbers with statements like:

>> z = 3+4*J
z =

3.0000 + 4.0000i
>> r = 0.9; theta = pi/3;
>> w = r*exp(J*theta)
w =

0.4500 + 0.7794i

To enter a complex matrix, you might type each element as a complex expression, or you can add
two real matrices as in the following:

>> E = [1 2; 3 4] + J*[5 6; 7 8]
E =

1.0000 + 5.0000i 2.0000 + 6.0000i
3.0000 + 7.0000i 4.0000 + 8.0000i

12 CHAPTER 2. ESSENTIALS OF OPERATING MATLAB

In version 4, complex constants are allowed, so we could also define E via E = [1+5i 2+6i
3+7i 4+8i];

For complex-valued matrices, some operators are sensitive to the imaginary part. For example,
when matrix entries are complex, the “prime” operator gives the conjugate transpose; thus E’ results
in

>> E’
ans =

1.0000 - 5.0000i 3.0000 - 7.0000i
2.0000 - 6.0000i 4.0000 - 8.0000i

>> E.’
ans =

1.0000 + 5.0000i 3.0000 + 7.0000i
2.0000 + 6.0000i 4.0000 + 8.0000i

The transpose of a complex matrix (sans conjugate) is obtained by typing E.’; the “period” before
the “prime” suppresses the conjugate operation.

2.4.6 The Colon : Operator

The colon symbol: represents one of themost useful operators inMATLAB. It is used for (1) creating
vectors and matrices, (2) specifying submatrices as subscript ranges, and (3) in for iterations.

To learn more about the use of :, type help : and see section 4.4(??).

Creating Regular Matrices

The colon can be used to create vectors or matrices with regularly spaced elements. For example, it
is often necessary to have a vector of integers running from 1 to N . When used in this way,

j:k is the same as [j,j+1,j+2,...,k] if j<k
j:i:k is the same as [j,j+i,j+2i,...,k] if i>0 and k>j, or if i<0 and k<j

NOTE: the empty matrix [] is created if i,j, and k do not satisfy the correct ordering relations.
The following example shows a 2 × 5 matrix created from regular submatrices. Notice that the
regular submatrix generated with the colon operator is always a row vector.

>> D=[(0:.1:.4);(4:-1:0)]
D =

0 0.1000 0.2000 0.3000 0.4000
4.0000 3.0000 2.0000 1.0000 0

Selecting Subscripts

The colon is also useful for picking out selected rows, columns, and elements of vectors andmatrices.
When used by itself, as in D(:,j), we get the entire j-th column of the matrix D; likewise, D(i,:)
is its i-th row. In order to see the values of the third through fifth columns in all the rows of the
matrix D above simply type:

2.4. DATA, VARIABLES, AND EXPRESSIONS 13

>> D(:,3:5)
ans =

0.2000 0.3000 0.4000
2.0000 1.0000 0

Running Loops

In order to designate the range of a for loop, the colon operator is used to generate a regular vector
of “indices” needed in the loop. In the most common case, we use 1:n, so we can step through the
integers 1, 2, ... n. Thus, the usual loop is

for i = 1:n
some operation depending on i;

end

Storage Order of Matrix Elements

For the most part, we are not concerned with the internal storage order of the matrices in MATLAB.
But there is one common situation where the colon operator is used and the storage order makes a
difference. When a matrix A is written as A(:) the meaning is to take all the elements of A and put
them in one large column vector. Since the storage of the matrix A is column dominant, the columns
are stacked on top of one another when creating A(:).

>> A = [3:5;0:2]
A =

3 4 5
0 1 2

>> A(:) %---illustrate the storage order for matrices
ans =

3
0
4
1
5
2

2.4.7 Special Constants

MATLAB contains a number of predefined constants that come in handy. These include not only π ,
∞ and

√
−1, but also the floating point tolerance eps, and the IEEE value NaN which stands for

“not a number”—the result of a illegitimate floating-point computation.

>> [i j] %--assumed at start up
ans =

0 + 1.0000i 0 + 1.0000i
>> format long

14 CHAPTER 2. ESSENTIALS OF OPERATING MATLAB

>> [pi exp(1)]
ans =

3.14159265358979 2.71828182845905

>> eps
eps =

2.220446049250313e-16

>> [0/0 1/0]
Warning: Divide by zero
ans =

NaN Inf

Special Values
ans result of last evaluation (when not assigned)
clock wall clock time as [year month day hour minute seconds]

computer type of computer
date string with the date in dd-mmm-yy format
eps floating-point precision
i,j

√−1 (initially defined at startup)
Inf ∞
NaN IEEE standard representation: “not-a-number”
pi π

2.4.8 Text Strings

Text strings in MATLAB are just arrays of characters, but they are identified internally as having the
type “string”. The characters can be forced to take on their numerical ASCII values by applying abs
to the string. Conversely, the string nature can be restored with the function setstr. String oper-
ations must be done via matrix operations. Thus, string concatenation of ’abcd’ and ’qwerty’
is done by joining together the two sub-strings into a larger array: [’asdf’ ’qwertry’].

A string can be evaluated with eval, the resulting being to execute the command specified by
the string. Thus eval(’help fft’) will ask for help on the FFT function. The related function
feval will invoke the function given in a string.

Some functions exist for converting numbers to strings: num2str and int2str Printing
formatted text strings can present some problems if the user is not familiar with the C language. The
functions sprintf and fprintf are borrowed from C, but the quoting of arguments is a little
different—single quotes are used instead of double quotes. Also the number of formats is restricted.

2.5. PLOTTING GRAPHS 15

Text and Strings
abs convert string to ASCII values
eval evaluate text macro
feval evaluate function given by string
fprintf formatted i/o as in C
hex2num convert hex string to number
int2str convert integer to string
isstr detect string variables
num2str convert number to string
setstr set flag indicating matrix is a string
strcmp compare string variables
sprintf convert number to string à là C

2.5 Plotting Graphs

A most important feature of MATLAB is its plotting capabilities. Graphical output of signals is a
necessary part of signal processing. MATLAB has built-in functions for making the following types
of plots: linear x–y, loglog, semilog, polar, mesh, contour, and bar charts. A separate window (or
screen) is devoted to graphics display. Once the graph is on the screen you can add labels to it with
title, xlabel for the x-axis, ylabel for the y-axis, and text for annotation. A grid can also
be overlayed (grid). There are a variety of other commands for controlling the screen, scaling, etc.
All of these plot commands are documented by the help facility. If you type help plot, you
will get a description of the basic x–y plotting function and a list of related plotting functions. The
demos also contain some interesting plots; type demo and follow the menu.

Graph Annotation
grid overlay a grid on a plot
ginput graphics input: get (x,y) position from mouse
gtext mouse-positioned text
text annotation, positioned at (x,y)
title make title from text string
xlabel label the x-axis
ylabel label the y-axis

2.5.1 1-D Plotting

The simplest use of plot is

>> plot(y)

If y is a real vector, this command will simply plot the sequence of elements of y using the integers
1:length(y) to label the horizontal axis. The data points will be connected by straight (solid)
lines. If y is a real matrix, each column will be drawn as a separate curve on the same graph, but
with a different line type. If y is a complex vector or matrix, then the plot will be the imaginary part
(as the y-axis) versus the real part (as the x-axis). In effect, this is nearly a polar plot.

16 CHAPTER 2. ESSENTIALS OF OPERATING MATLAB

Polar Coordinates

In some applications of complex numbers, polar plots are necessary, e.g., to plot the roots of a z-
transform polynomial H(z)

Hroo = roots(H);
polar(angle(Hroo), abs(Hroo), ’x’), grid

Each root position will be marked with an ’x’. Note that using plot on a complex vector will
generate an x–y plot that is similar to a polar plot, but the grid function will not draw a polar grid
as its does for the polar plot.

1-D Plotting Functions
bar bar graph (for histogram)

errorbar add error bars to plot
loglog log y vs. log x plot
polar polar coordinates
plot x–y plot, lines or points (x, o, +, *, .)

semilogx linear y vs. log x plot
semilogy log y vs. linear x plot
stairs bar graph without internal lines

2.5.2 Horizontal Scaling and Labeling

An extremely important maneuver is to control the labeling of the horizontal axis. The following
example shows how to create a horizontal “time” axis with labels running from t = −5 to t = +5.

>> t = -5.0:0.1:5.0; %--- creates 101 regularly-spaced points
>> ssss = sin(pi*t);
>> plot(t, sss)

This sequence of commands creates a vector (sss) of 101 samples of the signal s(t) = sin(π t)
at a sampling interval �t = 0.1. The vector t, used as the first argument to plot, will deter-
mine the horizontal axis scaling. Try it and see how it looks. If a third argument were given as
plot(t,s,’x’), the sample points would be marked with the symbol x, and not connected by
lines.

Multiple Plots Per Graph

You can also put multiple plots on the same graph by using a matrix, by including more x–y vector
pairs; or by using the hold command followed by more plot commands. Thus the following three
sequences of commands will generate a plot containing three curves:

y = rand(10,3);
y1 = y(:,1); y2 = y(:,2); y3 = y(:,3);
x = 1:10;
%---------

plot(y) %---plot 3 columns
%---------

plot(x, y1, x, y2, x, y3); %---plot 3 x-y pairs

2.5. PLOTTING GRAPHS 17

%---------
plot(y1)
hold on %---freeze the graphics window
plot(y2)
plot(y3)
hold off %--- un-freeze

2.5.3 Two-Dimensional Plotting

Mesh plots and contour plots are available for displaying 2-D data held in arrays. Since MATLAB
assumes that the fundamental 2-D data item is a matrix, the convention for viewing a 2-D array is that
the (1,1) point is in the upper left-hand corner. This is inconsistent with the signal matrix convention
that is used in columnwise data analysis—where the “origin” is in the lower right-hand corner. To
transform a contour plot into the expected DSP form, apply the rot90 function to the data prior
to plotting.

2-D & 3-D Plotting Functions
contour contour plot
mesh 3-D mesh plot

meshdom 2-D x–y domain for mesh()
rot90 rotate by 90 degrees, for contour()

2.5.4 Multiple Plots Per Page

MATLAB has limited ability to create a display with more than one plot; only 1, 2 or 4 plots per
page are possible. Grouping plots together is accomplished with the subplot command, which
sets up the configuration of the graphics window. subplot takes one argument ’ijk’ which is a
3 digit integer: the graphic window is partitioned into an i-by-j matrix of small window tiles and
the k-th of these is selected for the next plot command. The numbering of the plot in the 2× 2 case
is demonstrated by the following example:

>> t = -0.5:0.1:0.5;
>> sss = sin(pi*t);
>> subplot(221)
>> plot(1:9, ’o’), title(’FIRST’)
>> subplot(222)
>> plot(3:-1:-7), title(’SECOND’)
>> subplot(223)
>> plot(t, sss), title(’THIRD’)
>> subplot(224)
>> plot(t, sss.ˆ2, ’x’), title(’FOURTH’)

produces the four plots shown in Figure 2.1. To reset the graphics window back to one plot per page,
use subplot with no argument.

18 CHAPTER 2. ESSENTIALS OF OPERATING MATLAB

0 5 10
0

2

4

6

8

10
FIRST

0 5 10 15
-10

-5

0

5
SECOND

-0.5 0 0.5
-1

-0.5

0

0.5

1
THIRD

-0.5 0 0.5
0

0.2

0.4

0.6

0.8

1
FOURTH

Figure 2.1: Using subplot to put multiple plot on one page.

2.5.5 Controlling the Graphics

Several commands can be used to control the behavior of the graphics window. The most useful of
these is hold which inhibits the “clear screen” that is done prior to every plot command. Thus it is
possible to overlay several plots. The automatic scaling is done for the first plot, so futher plots must
adhere to that scaling. The axis command allows the user to specify the scaling of the graphics
window.

Graphics Window Control
axis freeze the axis limits; also manual scaling
clg clear graphics screen
hold hold plot (for overlaying multiple plots)
pause wait between plots in an M-file
shg show graphics screen

subplot 2 or 4 plots per page

Graphic hardcopy is usually site-dependent, but it is important to realize that a post-processing
program is needed to actually produce the graphics output. This program is called gpp (graphics
post processor). The input to gpp is created within MATLAB using the meta command, which turns
the plots on the screen into disk files that can be used by gpp. Consult your site manager for details
on making hardcopy of your plots.

2.6. USER INTERFACE 19

Graphics Hard Copy
!gpp filename graphics post processor (OS shell command)

makes hard copy from a metafile
meta filename make graphics metafile from present screen plot

print send graph screen to printer (system dependent)
print -deps produce Encapsulated POSTSCRIPT file

prtsc print screen dump (system dependent)

Note: the Student version only permits screen dumps.

2.6 User Interface

MATLAB is most often used as a self-contained system, but it does not have to be isolated from other
programs and external sources of data. In signal processing, it is especially important to be able
to bring data into MATLAB from external sources, such as an A/D system. The FFT and plotting
capabilities alone make MATLAB a good system for viewing signals and making sonograms.

2.6.1 Disk Files

The interface into the file system from MATLAB is rather simple. The user is always located in a
current directory, which can be changed via the chdir command. The user can obtain a list of all
files with dir; just the M-files and the *.mat files are listed by the what command. Files can be
deleted (del) and they can be typed out to the terminal (type).

Since MATLAB is based on the concept of a workspace, it is essential that the user be able to save
and restore the entire workspace; the commands save filename and load filenamewill accomplish
this.

Disk File Operations
chdir change working directory
delete delete a file
diary write diary of the session to disk file
dir directory of files on disk

fprintf formatted printf à là C
load load variable from .mat file or ASCII file
pack compact memory (garbage collection?)

equivalent to save, clear, load
save save variable to a .mat file

!translate read & write other data formats
type list function or file
what show M-files and .mat files on disk

Memory Limitations

In the MATLAB environment, variables are continually being created and destroyed, so there is a
need for some sort of “garbage collection” to remove dead (or unused) space. In PC-MATLAB, it is
easy to run out of space. Unfortunately, MATLAB has no automatic garbage collection mechanism.
The closest approximation is a MATLAB function called pack that wil save all the variables in the
entire workspace, then clear the entire workspace, and finally load the saved variables. This is

20 CHAPTER 2. ESSENTIALS OF OPERATING MATLAB

time-consuming, but it is the only way to get some room to work when memory limits start to hinder
your progress.

2.6.2 Importing and Exporting Data

MATLAB has its ownbinaryfile format that is used in the.matfiles. Eachfile contains a small header,
followed by all the array values in double-precision binary format. There are utilities for converting
from other common formats (e.g., ASCII) into the .mat file form. The load will actually read
ASCII files in which each row contains the same number of data items. The !translate program
will exchange data between the .mat file format and others. And if those are insufficient, some C
functions (mload.c and msave.c) are available, so the user can write a customized translation
program between the .mat file form and any other specialized format.

Version 4 Changes

In version 4, file I/O is greatly enhanced by functions such as fread and fwrite which operate
similar to the C functions with the same names. The functions allow direct binary reading and
writing of disk files. This is especially useful for importing data from A-to-D converters, such as
12-bit speech signals and 16-bit sound, as well as 8-bit image data from scanners.

2.6.3 Diary: Recording a User’s Session

Since MATLAB is an interpreted language, the normal mode of operation is for the user to issue
commands, one at a time, from the keyboard. These input commands are echoed in the command
window; most of the output is displayed in the same command window. Once the workspace
becomes cluttered with many variables after a long sequence of commands, it is hard to keep track of
everything. One aid is the diary command, which allows the user to direct all command window
input and output to a file. Thus a record can be made of an entire MATLAB session. This can be
useful in debugging, or in producing final reports as might be needed for homework problems or
projects.

Chapter 3

Vectors, Vectors, Everywhere

This is the heart and soul of MATLAB. It is certainly the case that an appreciation of matrices and
vectors will make MATLAB seem logically consistent.

3.1 Matrix and Array Operations

A full range of numerical operations on matrices and vectors is built into MATLAB. There are two
categories of array operations: (1) those that obey the laws of matrix algebra, and (2) element-wise
operations that are applied individually over the entire array.

3.1.1 Matrix Operations

The basic matrix operations are addition of matrices (denoted +), subtraction (-), multiplication (*),
and conjugate transpose (’). For example, the statement

>> D = A*B + C’

says to form the new matrix D by multiplying the matrix A times the matrix B and add the result to
the conjugate transpose of the matrix C. Of course, this will only work if the dimensions of A, B, and
C are consistent for the operations specified. Recall that matrix multiplication is only defined when
the number of columns in A equals the number of rows in B. If not, MATLAB will complain and try
to tell you what is wrong. Scalars can multiply any matrix or vector.

In addition to the standard operations above, MATLAB supports two forms of “matrix division”:
left and right inverses. These operations can be used to solve sets of linear equations, using either
the left inverse operator \ or the right inverse operator /. Thus,

x = A\b is a solution to A*x = b

x = b/A is a solution to x*A = b

If the matrix A is a nonsingular square matrix, “left division”, denoted A\b, corresponds to left mul-
tiplication of b by the inverse of A. That is, an equivalent MATLAB expression would be inv(A)*b.
Similarly b/A which denotes “right division” is equivalent to b*inv(A) when A is invertible. It is
worth pointing out that, in both cases, MATLAB actually computes the matrix division result without
explicitly forming the matrix inverse.

21

22 CHAPTER 3. VECTORS, VECTORS, EVERYWHERE

Matrix Operators Elementwise Array Ops
+ addition + same
- subtraction - same
* multiplication .* pointwise multiply
/ right (pseudo)-inverse ./ right division
\ left (pseudo)-inverse .\ left division
ˆ matrix power: An .ˆ element powers
’ conjugate transpose .’ transpose (no conjugate)

3.1.2 Simultaneous Linear Equations

Avery common operation needed in all fields is the solution of a set of simultaneous linear equations.
Since this problem can be expressed as a matrix equation:

Ax = b �⇒ x = A−1b

the solution is obtained either by inverting A, to get x = A−1b, or, more generally, by using the
left inverse of A. In MATLAB the answer is obtained with the left inverse, x = A\b, which has
the advantage that all of the special situations will be taken care of (e.g., over-determined, under-
determined, singular, etc.)

In the general case where A is not square, or square but not invertible, the “pseudo-inverse”
of A is used to solve the linear equations. (NOTE: when the solution of Ax = b is not unique,
the MATLAB function x = pinv(A)*b gives a different answer from x = A\b.) See help on
pinv, / or \ and your favorite linear algebra text for a discussion of the pseudo-inverse. As a final
note, the left inverse operator is extremely useful for least-squares approximation problems in which
the linear equations are over-determined. These situations arise in signal modeling (e.g., Prony’s
method, linear prediction, etc.).

3.1.3 Element-by-Element Array Operations

Array operations, as opposed to matrix operations, are element-by-element arithmetic operations.
Instead of the usual matrix operation symbols + - * / \, the “period” operator is concatenated
with each symbol, .* .\ ./ , to represent element-by-element multiplication, left division,
and right division, respectively. Whenever element-by-element operations are used, the size of the
matrices involved must be identical; otherwise, MATLAB will complain. For example, suppose

x = [1 2 3] and y = [4 5 6]

Then the pointwise multiplication and division operators produce:

>> z = x.*y
z =

4 10 18

>> x.\y, x./y
ans =

4.0000 2.5000 2.0000
ans =

0.2500 0.4000 0.5000

3.1. MATRIX AND ARRAY OPERATIONS 23

The array operation of raising to a power, .ˆ, can take three forms. If both x and y are matrices
(vectors) with the same dimensions, the result z = y.ˆx is a matrix (vector) of the same dimension
with entries zi = yxii , e.g., for x and y above,

>> z = y.ˆx
z =

4 25 216

When one of the operands is a scalar, it is used over the entire matrix. The resulting matrix has the
same dimensions as the matrix operand. If the exponent is a scalar, we have

>> z = x.ˆ3
z =

1 8 27

or, when the base is a scalar, we have a convenient way to generate a geometric sequence, e.g., 2−n:

>> n = 0:-1:-6
n =

0 -1 -2 -3 -4 -5 -6

>> z = 2 .ˆn
z =

1.0000 0.5000 0.2500 0.1250 0.0625 0.0312 0.0156
>> z = 2..ˆn
z =

1.0000 0.5000 0.2500 0.1250 0.0625 0.0312 0.0156
>> z = 2.ˆn
??? Error using ==> ˆ
Matrix must be square.

The last statement, z = 2.ˆn shows that the “point” in these “point operations” might be misinter-
preted when the numerical scalar, such as 2, could have a decimal point. The number must contain a
decimal point, or be separated from the .ˆ operator with a space or grouped in parentheses to avoid
the confusion. This ambiguity is no longer present in version 4, 2.ˆn is interpreted correctly as
2 .ˆn.

3.1.4 Relational and Logical Operators

MATLAB has a full complement of built-in relational (greater than, less than, etc.) and logical (AND,
OR, NOT) operations. The symbols are obvious, except for logical NOT which is ˜.

Relational Operators Logical Ops
< <= == & (Logical AND)
> >= ˜= | (Logical OR)

˜ (Logical NOT)

24 CHAPTER 3. VECTORS, VECTORS, EVERYWHERE

These are applied to vectors or arrays in a pointwise fashion. They return a value that is either
TRUE or FALSE. MATLAB follows the conventions of the C language with respect to TRUE and
FALSE, because FALSE is zero and TRUE is any non-zero value with a preferred value of 1. Use
the help facility (help relop or help logop) to find out more details about how these work.

Numerous relational and logical functions are available to deduce properties of arrays and vari-
ables. Special variable types can be detected, strings compared and logical conditions can be applied
across entire arrays. For example, all will compute the logical AND of each column of an array,
and then return a row vector of 1’s and 0’s, indicating TRUE and FALSE.

Relational and Logical Functions
any logical OR over each column of an array
all logical AND (column-wise)
find list array indices where condition is TRUE
exist check if variables exist
isnan detect IEEE not-a-number NaN
finite detect infinities
isempty detect empty matrix
isstr detect string variable
strcmp compare string variables

An important use of the relational operators is to control an action over an entire vector, when
programming in MATLAB. For example, the expression x>5 when applied to a vector x will return
another vector of the same size as x with entries equal to 1 when x[i] is greater than 5 and 0
otherwise. Then the relational function find(y) can be used to extract those indices where y is
non-zero. For example, x(find(x>5)) will return a (smaller) vector containing all the values in
x which are greater than 5.

3.1.5 Scalar Math Functions

MATLAB also hasmany elementarymath functions (sin, cos, log, etc.). In general, these are element-
wise functions. (The matrix versions have different names, e.g., the matrix exponential, expm(A).)
The sinusoidal functions are veryuseful for generatingdiscrete-time signals. For example, to generate
one period of the sine-wave sequence y[n] = sin(2πn/8), type

>> n = 0:7;
>> y = sin(2*pi.*n/8)
y =
0 0.7071 1.0000 0.7071 0.0000 -0.7071 -1.0000 -0.7071

Trigonometric Functions
sin cos tan sinh cosh tanh
asin acos atan asinh acosh atanh

atan2 (4-quadrant arctangent)

Most math functions have the names that you would expect, so look for them with the help
facility. In addition to the trigonometric and hyperbolic functions, there are functions that manipulate
complex numbers: abs takes the magnitude, and angle computes the phase. The magnitude
function is called abs because it is a generalization of the absolute value function defined for real

3.1. MATRIX AND ARRAY OPERATIONS 25

numbers. In fact, all the math functions work correctly on complex numbers. For example, the
logarithm of a complex number is defined as:

log(z) = log(|z|) + j � z

The following example shows that MATLAB implements the logarithm correctly for this case.

>> log(1-j), log(2)/2, -pi/4
ans =

0.3466 - 0.7854i
ans =

0.3466
ans =

-0.7854

Elementary Math Functions
exp imag abs (complex mag)
log real angle (phase)
log10 conj (conjugate)
sqrt

Special Functions

The last class includes a number of special math functions that find use in statistics, and in filter
design.

Special Functions
bessel Bessel function
ellipj complete elliptic integral of the first kind
ellipk Jacobian elliptic functions
erf error function
gamma complete and incomplete gamma functions
inverf inverse error function

3.1.6 Quantization Functions

Another class of math functions are those associated with quantization: rounding, truncation, re-
mainders, etc. These are useful when creating indices. The remainder function can be modified
slightly to create the circular indexing needed in DSP. As it stands, rem is not a modulo-N function
because it returns an answer that has the same sign as the input. Included in this class is the rat
function that approximates a real number with a nearby rational.

Quantization Functions
ceil round towards +∞
fix round towards 0 (truncation)
floor round towards −∞
rat rational approximation to real number
rem remainder (signed)
round round to nearest integer
sign signum function

26 CHAPTER 3. VECTORS, VECTORS, EVERYWHERE

3.1.7 Vector Math Functions

MATLAB also has a class of functions that act on the columns of amatrix. In other words, the columns
of the matrix are treated as a group of vectors. This convention is used quite a bit in DSP, when a
group of signals needs to be processed by the same algorithm. See Section 3.1.1 for a definition of
a signal matrix.

The column-wise functions include the mean, sum, prod, max, min, etc. The style for these
functions is to treat each column of a matrix as an individual vector, and apply the function over
each vector. For example, when sum is applied to an M × N matrix, the result is an N -element
row vector, a 1× N matrix, where the i th entry in the vector is the sum of all the elements in the i th
column of the matrix.

Columnwise Data Analysis
corrcoef correlation coefficients max maximum

cov covariance matrix mean mean or average
cplxpair re-order into complex pairs median median
cumprod cumulative product of elements min minimum
cumsum cumulative sum of elements prod product of all elements
diff 1st difference (approx derivative) std standard deviation
hist histogram (no plotting) sum sum of all elements
sort sort vector (can also return index re-ordering)

3.1.8 Matrix Functions & Decompositions

Since MATLAB was originally created as a linear algebra package, it has many sophisticated matrix
operations and decompositions. The most well-known of these are the determinant (det), the trace
(trace), the inverse (inv), the characteristic polynomial (poly), and the eigenvector–eigenvalue
decomposition (eig). Other useful linear algebra operations include triangular factorization, or-
thogonal factorization, and the singular value decomposition, svd(). See the help facility for
how to use them.

Matrix Manipulation
diag construct diagonal matrix from a vector
fliplr flip rows of matrix left-to-right
flipud flip cols of matrix up-and-down
reshape change size of rows and columns
rot90 rotate 90 degrees (not transpose)
size return matrix dimensions
tril extract lower triangular part
triu extract upper triangular part
.’ matrix transpose operator
: general re-arrangement

3.1. MATRIX AND ARRAY OPERATIONS 27

Matrix Functions
det determinant of a square matrix
expm matrix exponential (expm1, expm2, expm3)
funm matrix function (user specified)
kron Kronecker product of matrices
logm matrix logarithm
poly characteristic polynomial
sqrtm matrix square root
trace sum of the diagonal elements in a matrix

Matrix Condition Numbers
cond condition number in 2-norm
norm matrix norms: 1-norm, 2-norm, F-norm,∞-norm
rank rank of a matrix
rcond reciprocal of condition number

Matrix Decomposition and Factorization
balance improve condition number
backsub back substitution (Gaussian elimination)
cdf2rdf convert complex-diagonal to real-diagonal
chol Cholesky factorization
eig eigenvalues and eigenvectors
hess Hessenberg form
inv matrix inverse
lu LU factors for Gaussian elimination
nnls non-negative least-squares approximation
null null space
orth orthogonalization of a matrix
pinv pseudo-inverse
qr orthogonal-triangular decomposition
qz QZ algorithm
rref reduced row echelon form

rsf2csf convert real-schur to complex-schur
schur Schur decomposition
svd singular value decomposition

3.1.9 Outer Products

These can be used to replicate a row or a column to produce a matrix, e.g., when x is a row vector,
ones(5,1)*x will give a matrix with 5 identical rows.

3.1.10 SubMatrices

Build up more complex matrices from smaller ones

>> A = [1 2; 3 4;];
>> B = [1 1 1 ; 2 0 3;];

28 CHAPTER 3. VECTORS, VECTORS, EVERYWHERE

>> C = [A, B]
>> C = [1 2 1 1 1

3 4 2 0 3]

Can also use the function kron to repeat and scale submatrices:

>> A = [1 2; 3 4;];
>> B = [1 1 1 ; 2 0 3;];
>> C = kron(A,B)
>> C = [1 1 1 2 2 2

2 0 3 4 0 6
3 3 3 8 8 8
6 0 9 16 0 24]

Notice the scaled copies of B that make up C.

3.1.11 Empty Matrices

The empty matrix is a legitimate construct in MATLAB. Some operations naturally produce the
empty set as an answer, so MATLAB uses the notation [] to denote it.

3.1.12 Special Matrices

All of these functions arematrix constructors. Among themost often used are thematrices consisting
of all ones, ones(), and all zeros, zeros(). The Toeplitz matrix and Vandermonde matrix forms
arise quite often in DSP.

Special Matrices Known by Name
compan companion matrix linspace linearly spaced vectors
diag diagonal matrix from a vector logspace logarithmically spaced vectors
eye identity matrix magic magic square

gallery menu of various esoteric forms meshdom domain for mesh plots
hadamard Hadamard matrix ones matrix of all ones
hankel Hankel matrix rand matrix with random entries
hilb Hilbert matrix toeplitz Toeplitz matrix
ident same as eye vander Vandermonde matrix
invhilb inverse of Hilbert matrix zeros matrix of all zeros

3.1.13 Advanced Numerical Functions

There are also a number of functions for numerical solution of problems: numerical integration, nu-
merical solution of differential equations, spline fitting for interpolation, and numerical computation
of the zeros of a non-linear function.

Interpolation
spline cubic spline
table1 1-D table look-up
table2 2-D table look-up

3.1. MATRIX AND ARRAY OPERATIONS 29

Differential Equation Solution, Integration
ode23 2nd/3rd order Runge-Kutta method
ode45 4th/5th order Runge-Kutte-Fehlberg method

quad, quad8 numerical function integration

Non-Linear Equations and Optimization
fmin min of function of one variable
fmins min of multivariable function (unconstrained)
fsolve solution to system of nonlinear equations

(zeros of a multi-variable function)
fzero zero of a function of one variable

MATLAB also has functions for finding roots and doing other manipulations of polynomials
These are discussed in Section 3.2.

30 CHAPTER 3. VECTORS, VECTORS, EVERYWHERE

Chapter 4

Programming in MATLAB

One significant value of the MATLAB environment it that it is extensible, because the user can create
new functions and add them to the environment. Including new functions in the environment is
as simple as creating an ASCII file and putting it in a directory that is on the path specified by the
environment variableMATLABPATH. These functions are called “M-files” because the file namemust
have a .m extension. Indeed, many of the functions supplied in the standard toolboxes are actually
M-files. Since each M-file is an ASCII file, an excellent way to learn MATLAB programming is to
view some of the existing M-files, which can be done using the type command.

There are two type of M-files which serve different purposes:

1. Script: a sequence of often repeated commands

2. Function: a transformation from input variables to outputs.

The function M-file contributes a new verb (or action) to the MATLAB language. Since it transforms
inputs to outputs, it also matches the concept of a function in mathematics or a system in engineering.
The script M-file, onf the other hand, is convenient for saving demos and plots with labels and
annotation.

This chapter presents a style of programming that should help improve your MATLAB programs.
For more ideas and tips, study some of the functions provided in this appendix, or some of theM-files
found in the toolboxes of MATLAB. Copying the style of other programmers is always an efficient
way to improve your own knowledge of a computer language. In the discussion below, we present
the most important points involved in writing good MATLAB code assuming that your are both an
experienced programmer and have progressed beyond the novice level as a MATLAB user.

4.1 Editing ASCII M-files

M-files are regular ASCII text files with a “.m” extension. They can be created with any text editor,
e.g., emacs. In the course of creating and debugging an M-file, you need to go back and forth
between MATLAB and the editor. The exact procedure for doing this is system-dependent.

The specific editor used is a matter of personal taste and also depends on the operating system.
For theMacintosh version of MATLAB an editor is built into the MATLAB environment; for DOS and
UNIX external editing programs must be used. With the advent of “windowed” operating systems,
the editor is merely run in a separate window. Previously, in version 3.5 of MATLAB running under
DOS, a “shell escape” was needed to switch from MATLAB to the editor without killing MATLAB.

31

32 CHAPTER 4. PROGRAMMING IN MATLAB

Suppose that you want to edit (or create) the file myfunc.m using the generic editor in DOS. Using
the ! feature, you simply type

>> !edit myfunc.m

This starts the edit program under DOS and suspends MATLAB. When you are finished editing, save
the M-file and exit the editor as you normally do. This will re-activate MATLAB so that you can test
your M-file. Since DOS imposes a severe memory limit, you may have to use a small editor so that
both MATLAB and the editor can be resident in the memory simultaneously.

On the Macintosh, the editor is coupled into the MATLAB program. One feature that is available
is the ability to “save and execute” the edit window. Under version 3.5, this was done with cmd-G;
in version 4, use cmd-E, or pull down the File Menu when the edit window is active.

4.2 Creating Your Own Scripts
Whenever you have a long sequence of MATLAB commands that you want to execute repeatedly,
you should create a script M-file. A script file simply contains the list of commands, and, whenever
the script filename is invoked, they will be executed as though you typed them in at the keyboard,
one after another. An ideal use for a script is saving a sequence of plotting commands with labeling
information, such as would be needed in a demo. In the following case, the sequence of commands
would generate a signal, take its FFT and display the spectrum and the signal together as a two-panel
subplot.

%--
%-- Demonstrate the spectrum of a sinusoid
%--
format compact
clear %-- remove everything else from workspace
F_samp = 2000;
T_interval = 0.1;
F_sin = 23.45 %-- echo the sinusoid’s frequency (Hertz)
tt = 0 : (1/F_samp) : T_interval;
xx = cos(2*pi*F_sin*tt);
%
subplot(212)
plot(tt, xx), xlabel(’TIME (sec)’)
title(’SINE WAVE’)
%
Nfft = 512;
XX = fft(xx, Nfft);
ff = F_samp*([0:Nfft-1]/Nfft);
jkl = 0:Nfft/2; %-- only show positive freqs
%
subplot(211)
plot(ff(jkl), abs(XX(jkl))), xlabel(’FREQUENCY (Hz)’)
title(’SPECTRUM of SINUSOID’), ylabel(’MAGNITUDE’)

Note the use of semicolons to suppress printing of intermediate results except for F_sin. If the
foregoing example is saved into a file called showfft.m, then it can be invoked from the command
line via:

>> showfft

4.3. CREATING YOUR OWN FUNCTIONS 33

When the commands are saved in a file, it would be easy to make minor changes to show other
cases. For example, to change the frequency we only need to edit one line of the file to set F_sin to
another value. Suppose that we want a sine wave with exactly four periods over the specified time
interval. Then we would define F_sin as F_sin = 4/T_interval.

A second example will illustrate how a script differs from a function (next section). Suppose we
wish to create a vector that is clipped—all elements larger than a certain threshold are set equal to
the threshold limit. A script for doing this is as follows:

Lx = length(x); %-- operate on vector x
for n=1:Lx %-- Loop to do the center clip

if(abs(x(n)) > thresh) %-- need a threshold
x(n) = sign(x(n)*thresh;

end
end

If these commands were contained in a file called clipit.m on the MATLAB path, then typing
>> clipit would cause MATLAB to first determine the length of the vector x using the function
length, then use a for loop to find the elements in x that have to be saturated. Doing things this
way assumes that the vector named x already exists in the MATLAB workspace, and that a threshold
has been defined using the name thresh. Furthermore, the the vector x is modified by the script.
In other words, x and thresh are global variables in the workspace, as are the auxiliary variables
n and Lx. (Warning: if we had used i as the loop index, then start-up definition of i as the

√
−1

would have been clobbered.) This sort of script is not necessarily a good way to do this problem
because it is so inflexible—if we want to clip a different vector y we must edit clipit.m.

4.3 Creating Your Own Functions

A better way to do the clip operation is to create a function M-file that takes two input arguments
(a signal vector and a scalar threshold) and returns an output signal vector. We will show that most
functions can be written according to a standard format. In order to continue with the clip example,
use your editor to create an ASCII file clip.m that contains the following statements:

34 CHAPTER 4. PROGRAMMING IN MATLAB

function y = clip(x, Limit)
%CLIP saturate mag of x[n] at Limit
% when |x[n]| > Limit, make |x[n]| = Limit
%
% usage: Y = clip(X, Limit)
%
% X - input signal vector
% Limit - limiting value
% Y - output vector after clipping

[nrows ncols] = size(x);

if(ncols ~= 1 & nrows ~= 1) %-- NEITHER
 error('CLIP: input not a vector')
end
Lx = max([nrows ncols]); %-- Length

for n=1:Lx %-- Loop over entire vector
 if(abs(x(n)) > Limit)
 x(n) = sign(x(n))*Limit; %-- saturate
 end
end
y = x; %-- copy to output vector

Eight lines of
comments at the
beginning of the
function will be the
response to
help clip

First step is to figure out
matrix dimensions of x

Input could be
row or column
vector

Since x is local, we can
change it without
affecting the workspace

Preserve the sign of x[n]

create output vector

We can break down the M-file clip.m into four elements:

1. Definition of Input/Output: Function M-files must have the word function as the very first
thing in the file. The information that follows function on the same line is a declaration
of how the function is to be called and what arguments are to be passed. The name of the
function should match the name of the M-file; if there is a conflict, it is the name of the M-file
which is known to the MATLAB command environment.
Input arguments are listed inside the parentheses following the function name. Each input
is a matrix. The output argument (a matrix) is on the left side of the equals sign. Multiple
output arguments are also possible, e.g., notice how the functionsize(x) inclip.m returns
the number of rows and number of columns into separate output variables. Square brackets
surround the list of output arguments. Finally, observe that there is no explicit return of the
outputs; instead, MATLAB returns whatever value is contained in the output matrix when the
function completes. The MATLAB function return just leaves the function, it does not take
an argument. For clip the last line of the function assigns the clipped vector to y.
The essential difference between the function M-file and the script M-file is dummy variables
versus permanent variables. The following statement creates a clipped vector wclipped
from the input vector win.

>> wclipped = clip(win, 0.9999);

The arrays win and wclipped are permanent variables in the workspace. The temporary
arrays created inside clip (i.e., y, nrows, ncols, Lx and i) exist only while clip runs;
then they are deleted. Furthermore, these variable names are local to clip.m so the name x
could also be used in the workspace as a permanent name. These ideas should be familiar to
anyone with experience using a high-level computer language like C, FORTRAN or PASCAL.

2. Self-Documentation: A line beginning with the % sign is a comment line. The first group of
these in a function are used by MATLAB’s help facility to make M-files automatically self-
documenting. That is, you can now typehelp clip and the comment lines from yourM-file

4.3. CREATING YOUR OWN FUNCTIONS 35

will appear on the screen as help information!! The format suggested in clip.m follows the
convention of giving the function name, its calling sequence, definition of arguments and a
brief explanation.

3. Size and Error Checking: The function should determine the size of each vector/matrix that
it will operate on. This information does not have to be passed as a separate input argument,
but can be extracted on the fly with the size function. In the case of the clip function,
we want to restrict the function to operating on vectors, but we would like to permit either a
row (1× L) or a column (L × 1). Therefore, one of the variables nrows or ncols must be
equal to one; if not we terminate the function with the bail out function error which prints
a message to the command line and quits the function.

4. Actual Function Operations: In the case of the clip function, the actual clipping is done
by a for loop which examines each element of the x vector for its size versus the threshold
Limit. In the case of negative numbers the clipped value must be set to -Limit, hence the
multiplication by sign(x(n)). This assumes that Limit is passed in as a positive number,
a fact that might also be tested in the error checking phase.

4.3.1 Programming Primitives

In order to support a rich programming environment, MATLAB contains a number of operations that
are essential for program flow: if, else, for, while, etc. When the operation must differentiate
between TRUE and FALSE, the convention is the same as used in the C language: FALSE is the
numerical value zero, and TRUE is any non-zero value, preferably one. The logical operators: &
(AND), | (OR), and ˜ (NOT), and relational operators: > (GREATER THAN), < (LESS THAN), and
== (EQUAL TO) together with any and all permit compound logical statements to be written for
if tests. See Chapter 3, section 3.1.4(?) for more details. Thus, writing structured programs is
virtually identical to methods learned for C or FORTRAN.

Control Flow
break break out of for and while loops
end terminate if, for or while
for repeat according to a row vector
if conditional
else used with if
elseif ”
pause pause until key is pressed
return return from function
while do while a condition is TRUE

Example: The condition 1 < x[n] ≤ 2 is expressed as a conjunction of two inequalities:

if(xn>1 & xn<=2)

where xn is the MATLAB array containing the values of x[n].

4.3.2 Avoid FOR Loops

Since MATLAB is an interpreted language, certain common programming habits are intrinsically
inefficient. The primary one is the use of for loops to perform simple operations over an entire

36 CHAPTER 4. PROGRAMMING IN MATLAB

matrix or vector. Whenever possible, you should try to find a vector function (or the composition of a
few vector functions) that will accomplish the same result rather than writing a loop. For example, if
the operation were summing up all the elements in a matrix, the difference between calling sum and
writing a loop that looks like FORTRAN code can be astounding—the loop is unbelievably slow due
to the interpretative nature of MATLAB. Consider the following threemethods formatrix summation:

[Nrows, Ncols] = size(x);
xsum = 0.0;
for m = 1:Nrows
 for n = 1:Ncols
 xsum = xsum + x(m,n);
 end
end

Double Loop
needed to
index all
matrix entries

sum acts on a matrix
to give the sum down
each column

x(:) is a vector of
all elements in the
matrix

xsum = sum(sum(x));

xsum = sum(x(:));

The last two methods rely on the built-in function sumwhich has different characteristics depending
on whether its argument is a matrix or a vector (called “operator overloading”). To get the third (and
most efficient) method, the matrix x is converted to a column vector with the colon operator. Then
one call to sum will suffice.

Repeating Rows or Columns

Often it is necessary to form a matrix by replicating a value in the rows or columns. If the matrix is
to have all the same values, then functions such ones(M,N) and zeros(M,N) can be used. But
when you want to replicate a column vector x to create a matrix that has eleven identical columns,
you can avoid a loop by using the outer-product matrix multiply operation. The following MATLAB
code fragment will do the job:

X = x * ones(1,11)

If x is a length L columns vector, then the matrix X formed by the outer product is L × 11.

4.3.3 Vectorizing Logical Operations

The clip function offers a different opportunity for vectorization. The for loop in that function
contains a logical test andmight not seem like a candidate for vector operations. However, the logical
operators in MATLAB apply to matrices. For example, a greater than test applied to a 3× 3 matrix
returns a 3× 3 matrix of ones and zeros.

>> x = [1 2 -3; 3 -2 1; 4 0 -1]

4.3. CREATING YOUR OWN FUNCTIONS 37

>> x = [1 2 -3
3 -2 1
4 0 -1]

>> mx = x>0 %-- check the greater than condition
>> mx = [1 1 0

1 0 1
1 0 0]

>> y = mx .* x %-- multiply by masking matrix
>> y = [1 2 0

3 0 1
4 0 0]

The zeros mark where the condition was false; the ones denote true. Thus, when we multiply x
by the masking matrix mx, we get a result that has all negative elements set to zero. Note that the
entire matrix has been processed without using a loop.

Since the saturation done in clip.m requires that we change the large values in x, we can
implement the for loop with three array multipications. This leads to a vectorized saturation
operator that works for matrices as well as vectors:

y = x.*(abs(x)<=Limit) + Limit*(x>Limit) - Limit*(x<-Limit);

Three different masking matrices are needed to represent the three cases of negative saturation,
positive saturation, and no action. The additions correspond to the logical OR of these cases. The
number of arithmetic operations needed to carry out this statement is 3N multiplications and 2N
additionswhere N is the total number of elements inx. On the other hand, the statement is interpreted
only once.

Exercise

Write a variation of the clip function with three input arguments: the matrix x, and two thresholds,
and upper limit and a lower limit.

Creating an Impulse

Another simple example is given by the following trick for creating an impulse signal vector:
nn = [-20:80];
impulse = (nn==0);

This result could be plotted with comb(nn, impulse), or stem(nn, impulse) in ver-
sion 4. In some sense, this code fragment is perfect because it captures the essence of themathematical
formula which defines the impulse as only existing when n = 0.

δ[n] =
�
1 n = 0
0 n �= 0

The Find Function

An alternative to masking is to use the find function. This is not necessarily more efficient; it just
gives a different approach. The find function will determine the list of indices in a vector where

38 CHAPTER 4. PROGRAMMING IN MATLAB

a condition is true. For example, find(x>Limit); will return the list of indices where the
vector is greater than the Limit value. Thus we can do saturation as follows:

y = x;
jkl = find(y>Limit;
y(find(y>Limit)) = Limit*ones(jkl);
jkl = find(y<-Limit);
y(jkl) = -Limit*ones(jkl);

The ones function is needed to create a vector on the right-hand side that is the same size as the
number of elements in jkl. In version 4.0 this would be unecessary since a scalar assigned to a
vector is now assigned to each element of the vector.

Seek to Vectorize

The dictum to “avoid for loops” is not always an easy path to follow, because it means the algorithm
must be cast in a vector form. We have seen that this is not particularly easy when the loop contains
a logical test, but such loops can still be “vectorized” if masks are created for all possible conditions.
This does result in extra arithmetic operations, but they will be done efficiently by the internal vector
routines of MATLAB, so the final result should still be much faster than an interpreted for loop.

4.3.4 Composition of Functions

MATLAB supports the paradigmof “functional programming”which in the language of system theory
is equivalent to cascading systems. Consider the following equation which can be implemented with
one line of MATLAB code.

L�

n=1
log (|xn|)

Here is the MATLAB equivalent:

sum(log(abs(x)))

4.3.5 Programming Style

“May your functions be short and your variable names long.” Each function should have a single
purpose. This will lead to short simple modules that can be composed together with other functions
to produce more complex operations. Avoid the temptation to build super functions with many
options and a plethora of outputs.

MATLAB supports long variable names—up to 32 characters. Take advantage of this feature to
give variables descriptive names. In this way, the number of comments littering the code can be
drastically reduced. Comments should be limited to help information and documentation of tricks
used in the code.

4.4 The COLON Operator
One essential part of MATLAB that is needed to avoid for loops is the colon notation for selecting
parts of matrices (see section 2.3.6(?) for more info). The help for : is given below:

>>help :
: Colon. Used in subscripts, FOR iterations and possibly elsewhere.

4.5. DEBUGGING AN M-FILE 39

J:K is the same as [J, J+1, ..., K]
J:K is empty if J > K.
J:I:K is the same as [J, J+I, J+2I, ..., K]
J:I:K is empty if I > 0 and J > K or if I < 0 and J < K.
The colon notation can be used to pick out selected rows,
columns and elements of vectors and matrices.
A(:) is all the elements of A, regarded as a single
column. On the left side of an assignment statement, A(:)
fills A, preserving its shape from before.
A(:,J) is the J-th column of A
A(J:K) is A(J),A(J+1),...,A(K)
A(:,J:K) is A(:,J),A(:,J+1),...,A(:,K) and so on.
For the use of the colon in the FOR statement, See FOR.

The colon notation works from the idea that an index range can be generated by giving a start, a
skip, and then the end. Therefore, a regularly spaced vector of integers is obtained via

iii = start:skip:end

Without the skip parameter, the increment is 1. Obviously, this sort of counting is similar to the
notation used in FORTRAN DO loops. However, in MATLAB you can take it one step further by
combining it with a matrix. If you start with the matrix A, then A(2,3) is the scalar element located
at the 2nd row, and 3rd column of A. But you can also pull out a 4×3 sub-matrix via A(2:5,1:3).
If you want an entire row, the colon serves as a wild card: i.e., A(2,:) is the 2nd row. You can
even flip a vector by just indexing backwards: x(L:-1:1). Finally, it is sometimes necessary to
just work with all the values in a matrix, so A(:) gives a column vector that is just the columns of
A concatenated together. More general “reshaping” of the matrix A can be accomplished with the
reshape(A,M,N) function. For example, a 5× 4 matrix B can be reshaped into a 2× 10 matrix
via: Bnew = reshape(B,2,10)

4.5 Debugging an M-file

Since MATLAB is an interactive environment, debugging can be done by examining variables in the
workspace. However, the big drawback in version 3.5 was the lack of a break point facility to stop
the execution of a function at a given line and then examine variables; version 4 contains a debugger
with support for break points. In version 3.5, stepping through a function M-file is not possible.
Rather the user must mimic the behavior of a function, or a script, by re-executing, by hand, the lines
that make up the function. Obviously, this suggests further that writing short functions is a good
thing—they are easier to debug.

40 CHAPTER 4. PROGRAMMING IN MATLAB

Programming and M-files
casesen set case sensitivity
disp display matrix or text
echo enable command echoing, for debugging
error display error message to command screen
etime elapsed time measurement
eval interpret text in variable as a command
exist check if variables exist

function define a function (with args)
getenv get environment string
global define a global variable
input get numbers from keyboard

keyboard call keyboard as M-file
menu select item from menu
nargin number of input args to a function
nargout number of output args from a function
startup startup M-file (site dependent)

There are some support functions that will aid in debugging: echo, disp, keyboard, and
error. The echo function will type out the result of all lines of code in a function, so that a dump
of all possible information is done. disp is a print function which can be inserted to display a
matrix within a function; errorwill test a condition, and then print a message and stop the function
if the condition is true. The function keyboard comes the closest to being a breakpoint operator,
because it pauses the program and returns control to the user at the keyboard. Then the user can enter
MATLAB commands, for example to display some arrays or check numerical values. The keyboard
mode is terminated in the same way as MATLAB, so you must careful not to hit the exit key twice
(i.e., ctl-D in UNIX, ctl-Z in DOS, or cmd-Q on the Mac). Upon termination, the execution of
the suspended function is resumed.

Command Window Manipulation
clc clear command screen

format set output display format precision
home home cursor

4.5.1 Version 4 Debugger

Need some info here

4.5.2 Timing Loops and Functions

One objective of algorithm testing in MATLAB is correctness, but another is efficiency. Efficiency
can be measured by timing an operation or by counting the number of operations. MATLAB provides
functions for both: etime to compute the elapsed time between two lines in a program; and flops
to count the cumulative number of floating point operations done in all the functions usedbyMATLAB.
On a time-shared system, elapsed time measurements may be highly variable depending on system
load, number of users, etc.

The “flop” count is cumulative, but it can be reset to zero by using flops(0). Thus the
following code will count the number of flops in an FFT.

4.5. DEBUGGING AN M-FILE 41

N = 512;
x = rand(N,1) + sqrt(-1)*rand(N,1);
flops(0);
X = fft(x,N);
numOfops = flops

The count for the FFT will include all multiplications and additions (real) including some operations
needed to set up the table of exponentials used by fft.

Timing Measurements
clock wall clock time
etime elapsed time
flops count of floating-point operations

42 CHAPTER 4. PROGRAMMING IN MATLAB

4.6 Programming Tips
This section presents a few programming tips that should help improve your MATLAB programs.
For more ideas and tips, study some of the functions provided in this appendix, or some of theM-files
in the toolboxes of MATLAB. Copying the style of other programmers is always an efficient way to
improve your own knowledge of a computer language. In the hints below, we discuss some of the
most important points involved in writing good MATLAB code. These comments assume that your
are both an experienced programmer and at least an intermediate user of MATLAB.

4.6.1 Avoid FOR Loops

There is temptation among experienced programmers to use MATLAB in the same fashion as a high-
level language like FORTRAN or C. However, this leads to very inefficient programming whenever
for loops are used to do operations over the elements of a vector, e.g., summing the elements in
a vector. Instead, you must look for the MATLAB functions that will do the same operation with a
function call—in the case of summing, there is a MATLAB function called sum.

An alternative strategy that also avoidsfor loops is to use vector operations. In the sum example,
the trick is to recognize that the sum of the elements in a row vector can be obtained by multiplying
by a column vector of all ones. In effect, the inner product operation computes the sum.

The primary reason for introducing these tricks is that a for loop is extremely inefficient in
MATLAB which is an interpreted language. Macro operations such as matrix multiplies are about
as fast as micro operations such as incrementing an index, because the overhead of interpreting the
code is present in both cases. The bottom line is that for loops should only be used as a last resort,
and then probably only for control operations, not for computational reasons. More than likely, 90%
of the for loops used in ordinary MATLAB programs can be replaced with equivalent, and faster,
vector code.

4.6.2 Vectorize

The process of converting a for loop into a matrix-vector operation could be referred to a “vector-
izing.” Sometimes vectorizing appears to give a very inefficient answer in that more computation
is done than in the for loop. Nonetheless, the resulting program will run much faster because one
simple operation is applied repeatedly to the vector.

Repeating Rows or Columns

Often it is necessary to form a matrix by repeating one or more values throughout. If the matrix is
to have all the same values, then functions such ones(M,N) and zeros(M,N) can be used. But
suppose that you have a row vector x and you want to create a matrix that has 10 rows each of which
is a copy of x. It might seem that this calls for a loop, but not so. Instead, the outer-product matrix
multiply operation can be used. The following MATLAB code fragment will do the job:

X = ones(10,1) * x

If x is a length L row vector, then the matrix X formed by the outer product is 10× L .

Vector Logicals

One areawhere slowprograms are born lies in conditionals. Seemingly, conditional testswould never
vectorize, but even that observation is not really true. Within MATLAB the comparison functions

4.6. PROGRAMMING TIPS 43

such as greater than, equal to, etc. all have the ability to operate on vectors or matrices. Thus the
following MATLAB code

[1 2 3 4 5 6] < 4

will return the answer [1 1 1 0 0 0], where 0 stands for FALSE and 1 represents TRUE.
Another simple example is given by the following trick for creating an impulse signal vector:

nn = [-20:80]; impulse = (nn==0);

This result could be plotted with comb(nn, impulse). In some sense, this code fragment
is perfect because it captures the essence of the mathematical formula which defines the impulse as
only existing when n = 0.

Vectorize a CLIP function

To show an example of vectorizing at work, consider writing anM-file that will clip an input signal to
given upper and lower limits. The code from a conventional language would look like the following
in MATLAB:

function y = clip(x, lo, hi)
% CLIP --- threshold large and small elements in matrix x
% ==========> SLOWEST POSSIBLE VERSION <================
%
[M,N] = size(x);
for m = 1:M
for n = 1:N
if x(m,n) > hi

x(m,n) = hi;
elseif x(m,n) < lo

x(m,n) = lo;
end, end, end

The problem with this first version is the doubly nested for which is used to traverse all the
elements of the matrix. In order to make a faster version, we must drop the loop altogether and
use the vector nature of logicals. Furthermore, we can exploit the fact that TRUE and FALSE have
numerical values to use them as masks (via multiplication) to select parts of the matrix x. Note that
([x<=hi] + [x>hi]) is a matrix of all ones.

function y = clip(x, lo, hi)
% ============> FAST VERSION <=============
% (uses matrix Logicals to replace Loops)
y = (x .* [x<=hi]) + (hi .* [x>hi]);
y = (y .* [x>=lo]) + (lo .* [x<lo]);

If you count the number of arithmetic operations done in the second version, you will find that it is
much greater than the count for the first version. To see this, use a very large matrix for x, and time
the two functions with etime and flops. Even though you can generate cases where the second
version requires 10 times as many operations, it will still run much faster—maybe 10 times faster!

44 CHAPTER 4. PROGRAMMING IN MATLAB

4.6.3 The COLON Operator

One essential part of MATLAB that is needed to avoid for loops is the colon notation for selecting
parts of matrices. The help for : is given below:

>>help :
: Colon. Used in subscripts, FOR iterations and possibly elsewhere.

J:K is the same as [J, J+1, ..., K]
J:K is empty if J > K.
J:I:K is the same as [J, J+I, J+2I, ..., K]
J:I:K is empty if I > 0 and J > K or if I < 0 and J < K.
The colon notation can be used to pick out selected rows,
columns and elements of vectors and matrices.
A(:) is all the elements of A, regarded as a single
column. On the left side of an assignment statement, A(:)
fills A, preserving its shape from before.
A(:,J) is the J-th column of A
A(J:K) is A(J),A(J+1),...,A(K)
A(:,J:K) is A(:,J),A(:,J+1),...,A(:,K) and so on.
For the use of the colon in the FOR statement, See FOR.

The colon notation works from the idea that an index range can be generated by giving a start, a
skip, and then the end. Therefore, a regularly spaced vector of integers is obtained via

iii = start:skip:end

Without the skip parameter, the increment is 1. Obviously, this sort of counting is similar to the
notation used in FORTRAN DO loops. However, in MATLAB you can take it one step further by
combining it with a matrix. If you start with the matrix A, then A(2,3) is the scalar element located
at the 2nd row, and 3rd column of A. But you can also pull out a 4×3 sub-matrix via A(2:5,1:3).
If you want an entire row, the colon serves as a wild card: i.e., A(2,:) is the 2nd row. You can
even flip a vector by just indexing backwards: x(L:-1:1). Finally, it is sometimes necessary to
just work with all the values in a matrix, so A(:) gives a column vector that is just the columns of
A concatenated together. More general “reshaping” of the matrix A can be accomplished with the
reshape(A,M,N) function.

4.6.4 Matrix Operations

The default notation in MATLAB is matrix. Therefore, some confusion can arise when trying to do
point-wise operations. Take the example of multiplying two matrices A and B. If the two matrices
have compatible dimensions, then A*B is well defined. But suppose that both are 5×8 matrices and
thatwewant tomultiply them together element-by-element. In fact, we can’t domatrixmultiplication
between two 5 × 8 matrices. To obtain point-wise multiplication we use the “point-star” operator
A .* B. In general, when “point” is usedwith another arithmetic operator it modifies that operator’s
usual matrix definition to a point-wise one. Thus we have ./ and .ˆ for point-wise division and
exponentiation. For example, xx = (0.9) .ˆ [0:49] generates an exponential of the form
an , for n = 0, 1, 2, . . . , 49.

4.6. PROGRAMMING TIPS 45

4.6.5 Signal Matrix Convention

Often it is necessary to operate on a group of signals all at once. For example, when computing the
FFT on sections of a signal, it is convenient to put each section of the signal into one column of a
matrix and then invoke the fft function to operate on the entire matrix. The result is that the 1-D
FFT is computed down each column of the matrix. Another example along the same lines is the sum
function which when applied to a matrix returns a vector answer—each element of the vector result
is a column sum from the matrix. What would sum(sum(A)) compute for the matrix A?

This convention is not universal within MATLAB. For example, the filter function which is
another workhorse DSP function will only process one vector at a time.

4.6.6 Polynomials

Another convention that is used in MATLAB, and is needed for DSP is the representation for poly-
nomials. For the z-transform we often work with expressions of the form

H(z) = B(z)
A(z)

=

M�
�=0

b�z−�

N�
k=0

akz−k

In MATLAB the polynomials B(z) and A(z) are represented by vectors b and a containing their
coefficients. Thus a = [1 -1.5 0.99] represents the polynomial A(z) = 1 − 1.5z−1 +
0.99z−2. From the vector form, we can extract roots via the M-file roots(a), and also perform a
partial fraction expansionwithresiduez. In addition, the signal processing functionsfilter and
freqz both operate on the rational system function H(z) in terms of the numerator and denominator
coefficients: {b�} and {ak}.

yout = filter(b, a, xin)

[H, W] = freqz(b, a, Nfreqs)

4.6.7 Self-Documentation via HELP

MATLAB has a very convenient mechanism for incorporating help into the system, even for user-
written M-files. The comment lines at the beginning of any function are used as the help for that
function. Therefore, it behooves the programmer to pay attention to documentation and to provide
a few introductory comments with each M-file. For example, if you type help freqz, then the
response is:

>> help freqz

FREQZ Z-transform digital filter frequency response. When N is an integer,
[H,W] = FREQZ(B,A,N) returns the N-point frequency vector W and the
N-point complex frequency response vector G of the filter B/A:

-1 -nb
jw B(z) b(1) + b(2)z + + b(nb+1)z

H(e) = ---- = ----------------------------
-1 -na

A(z) 1 + a(2)z + + a(na+1)z

46 CHAPTER 4. PROGRAMMING IN MATLAB

given numerator and denominator coefficients in vectors B and A. The
frequency response is evaluated at N points equally spaced around the
upper half of the unit circle. To plot magnitude and phase of a filter:

[h,w] = freqz(b,a,n);
mag = abs(h); phase = angle(h);
semilogy(w,mag), plot(w,phase)

FREQZ(B,A,N,’whole’) uses N points around the whole unit circle.
FREQZ(B,A,W) returns the frequency response at frequencies designated
in vector W, normally between 0 and pi. (See LOGSPACE to generate W).
See also YULEWALK, FILTER, FFT, INVFREQZ, and FREQS.

You can also list the entire file freqz.m (by doing type freqz) to see that the help response
consists of the initial comments in the file. If the M-file is a built-in, help is still available, e.g., for
the filter function:

>> help filter

FILTER Digital filter.
Y = FILTER(B, A, X) filters the data in vector X with the
filter described by vectors A and B to create the filtered
data Y. The filter is a "Direct Form II Transposed"
implementation of the standard difference equation:

y(n) = b(1)*x(n) + b(2)*x(n-1) + ... + b(nb+1)*x(n-nb)
- a(2)*y(n-1) - ... - a(na+1)*y(n-na)

[Y,Zf] = FILTER(B,A,X,Zi) gives access to initial and final
conditions, Zi and Zf, of the delays.
See also FILTFILT.

Chapter 5

Signal Processing in MATLAB

Although MATLAB was not created originally as a signal processing package, it has many of the
attributes that would be found in an ideal interactive DSP environment. Many of the basic MATLAB
primitives naturally support DSP operations, because most DSP functions are based onmathematical
operations found in linear algebra. However, since there is no data type in MATLAB that is called
a signal, or a transform, it is necessary to establish some conventions for using vectors as signals.
Remember that MATLAB has only arrays of numbers, so it is up to the user to assign a meaning,
such as a “signal” to those arrays.

The DSP application clearly demonstrates the power of MATLAB when it is extended via new
M-files. Most of the functions in the Signal Processing Toolbox are provided in the form of functions.
The user can easily add some more, but the toolbox already provides many DSP functions for filter
design, spectrum analysis, etc.

5.1 MATLAB Signal Processing Tool Box
These new files developed for signal processing are not the only ones available. The basic MATLAB
release contains 67 signal processing functions that are listed below (using the help facility of
MATLAB).

MatLab:Signal_Toolbox

abcdchk cheb1ap decimate fir1 invfreqs nextpow2 series xcorr2
bartlett cheb1ord denf fir2 invfreqz numf specplot xcov
bilinear cheb2ap detrend freqs kaiser polystab spectrum yulewalk
blackman cheb2ord dftmtx freqz kratio prony square zp2ss
boxcar chebwin ellip grpdelay lp2bp rceps ss2zp
buttap cheby1 ellipap hamming lp2bs rcunwrap tf2ss
butter cheby2 ellipord hanning lp2hp readme2 triang
buttord conv2 fftfilt hilbert lp2lp remez vratio
cceps convmtx filtfilt interp nargchk remezdd xcorr

Many of these functions are devoted to digital filter design—specifically the order determination for
different types of IIR filters, and the design of FIR filters via windows and Chebyshev approximation
(the remez function). Numerous windows are available for both filter design and spectrum analysis:
Kaiser, Hamming, rectangular, etc. There are also functions for computing the complex cepstrum,
and for convolution and correlation.

47

48 CHAPTER 5. SIGNAL PROCESSING IN MATLAB

There are a variety of functions for doing Fourier analysis. For example, there is an fft()
function, which takes a DFT of a vector. It is not automatically padded out to the next power of two.
You can specify the DFT length by using a second argument fft(x,n); then zero-padding will be
done if the length(x) is less than n. If the input x is a matrix, then the 1-D FFT is performed
on each of the columns; likewise, for the inverse FFT function ifft(x,n). A 2-D version of the
FFT is also included: fft2 is part of the basic MATLAB toolbox.

The tables in the following sections summarize all the functions available in the Signal Processing
Toolbox.1 Try help on the individual function names for further information.

5.1.1 Version 3 of SP Toolbox

Need up-to-date information on new functionality

5.1.2 Signal Vector Convention

When studying DSP problems via MATLAB, we need a representation for signals and systems in
terms of MATLAB’s basic data object—the matrix. Obviously, we can represent a finite-length
sequence of signal samples as a vector, either a row or a column. In some instances, it does not
matter which you choose, but for consistency, it is best to always represent signals as column vectors.
If any MATLAB function doesn’t accept this form you can always try the transpose.

5.1.3 Signal Matrix Convention

The primary reason for standardizing on column vectors relates to processing multiple signals. For
a group of signals, the convention is to use a matrix in which each column is an individual signal.
Such a matrix will be called a signal matrix. Most of the DSP functions will accept a signal matrix
as input and perform their operation on each column of the matrix. For example, when computing
the FFT on sections of a signal, it is convenient to put each section of the signal into one column
of a matrix and then invoke the fft function to operate on the entire matrix. The result is that the
1-D FFT is computed down each column of the matrix. Another example along the same lines is the
sum function which when applied to a matrix returns a vector answer—each element of the vector
result is a column sum from the matrix. What would sum(sum(A)) compute for the matrix A?

This convention is not universal within MATLAB. For example, the filter function which is
another workhorse DSP function will only process one vector at a time.

5.2 Polynomials in Signals & Systems

Transforms are basic tools in the analysis of signals and systems, because they reducemany problems
to algebraic operations on polynomials. MATLAB has numerous functions for dealing with polyno-
mials. Polynomials are actually represented as vectors, where the vector elements are the polynomial
coefficients in descending powers of the variable. Thus the polynomial A(z) = 1−1.5z−1+0.99z−2
is represented by a vector a = [1 -1.5 0.99]. (This is still consistent with the z-transform
which uses polynomials in z−1; thus the last vector element is the coefficient of the highest neg-
ative power of z.) There are a number of polynomial functions: roots for finding roots, poly
for reconstructing a polynomial from its roots, conv for multiplying polynomials, deconv for

1Ref: Signal Processing Toolbox, The Math Works, Inc.

5.2. POLYNOMIALS IN SIGNALS & SYSTEMS 49

dividing polynomials, polyval and polyvalm for evaluating polynomials, and residue and
residuez for partial fraction expansions.

Polynomials
conv equivalent to poly multiplication
deconv equivalent to poly division

can return remainder, as well as quotient
poly make polynomial from its roots, or

characteristic polynomial of a matrix
polyfit polynomial curve fitting (Least-Squares)
polystab stabilization (flip roots inside UC)
polyval polynomial evaluation
polyvalm matrix polynomial evaluation
residue partial-fraction expansion is s
residuez partial-fractions for z-transform
roots extracted via companion matrix method

There is a simple correspondence between the representation of a sequence as a vector and the
representation of a polynomial as a vector. Since the z-transform of a finite-length sequence is just
a polynomial

X (z) =
N−1�

n=0
x[n]z−n

we see that the same vector represents both the sequence and the coefficients of its z-transform
polynomial, because the z-transform is written in ascending powers of z−1.

System functions for discrete-time systems are rational functions of the form

H(z) =

M�

�=0
b�z−�

N�

k=0
akz−k

MATLAB represents such rational functions as two vectors of polynomial coefficients, one for the
numerator and one for the denominator.

Unfortunately, two sources of confusion arise due to notational differences. The first is that
MATLAB indexes its rows and columns beginning at 1, instead of 0. You simply have to adjust
your thinking to take care of this. The other is due to the fact that in representing polynomials as
vectors, the vector elements correspond to the polynomial coefficients in descending order. This is,
in fact, what we want since it allows sequences to be indexed in ascending order in vectors. The
only place this really causes a problem is in partial fraction expansions. For this reason there is a
special function called residuez to make partial fraction expansions in the form

H(z) =
N�

k=1

Ak
1− zkz−1

50 CHAPTER 5. SIGNAL PROCESSING IN MATLAB

On the other hand, if you are making a partial fraction expansion of a rational Laplace transform:

H(s) =

M�

�=0
b�sM−�

N�

k=0
aksN−k

=
N�

k=1

Ak
s − sk

you would need to use the function residue. For example,

1
s2 + 5s + 6

= 1
s + 2

+ −1
s + 3

which is verifed by the following MATLAB evaluation:
» a = [1 5 6];
» [r, p, k] = residue;
» r = [1 -1]
» p = [2 3]
» k = []

In addition, the signal processing functions filter and freqz both operate on the rational
system function H(z) in terms of the numerator and denominator coefficients: {b�} and {ak}.

yout = filter(b, a, xin)

[H, W] = freqz(b, a, Nfreqs)

5.3 Important Functions for DSP

In the course of doing basic DSP problems, there are two crucial functions that must be mastered.
The first relates to the computation of the frequency response for a signal or a system. This can be
accomplished with the MATLAB function freqz, which uses the fft function to do most of its
computations. Understanding how these two functions work is the point of many of the exercises in
basic DSP.

The second basic function is filter which performs the IIR or FIR filtering of a signal.
Obviously, filter is used quite often to demonstrate the processing of signals. It can also be used
as a signal generator when the input is an impulse or white noise.

5.3.1 Spectrum Analysis: fft & freqz

In spectrum analysis, the objective is to compute a version of the Fourier transform. For discrete-time
signals, the transform of interest in the DTFT (discrete-time Fourier transform). However, the DTFT
is a function of a continuous frequency variable, ω, so it is not possible to compute all of the DTFT.
Most homework problems require a derivation of the closed form of the DTFT, and we would like
to use MATLAB to confirm that such analytical methods are correct.

From the computational point of view, we can only calculate samples of the Fourier transform,
using a finite transform known as theDFT (discrete Fourier transform). TheDFT is usually computed
using the FFT (fast Fourier transform) algorithm, which is an extremely efficient method whenever
the length of the transform is a highly composite integer, e.g., a power of 2. The fft function in

5.3. IMPORTANT FUNCTIONS FOR DSP 51

MATLAB will compute theDFT via the FFT algorithm. The length of the transform is either inherited
from the length of the input vector, or specified directly by the user. The help screen provides a
concise statement of the function’s capability:

>>help fft

FFT FFT(X) is the discrete Fourier transform of vector X. If the
length of X is a power of two, a fast radix-2 fast-Fourier
transform algorithm is used. If the length of X is not a
power of two, a slower non-power-of-two algorithm is employed.
FFT(X,N) is the N-point FFT, padded with zeros if X has less
than N points and truncated if it has more.
If X is a matrix, the FFT operation is applied to each column.
See also IFFT, FFT2, and IFFT2.

A related function is fftshift which moves the zero frequency point to the middle of the
vector. This is very convenient when plotting

>>help fftshift

FFTSHIFT Move zeroth lag to center of spectrum.
Shift FFT. For vectors FFTSHIFT(X) returns a vector with the
left and right halves swapped. For matrices, FFTSHIFT(X) swaps
the first and third quadrants and the second and fourth quadrants.
FFTSHIFT is useful for FFT processing, moving the zeroth lag to
the center of the spectrum.

To get an approximation to the DTFT, it is possible to use the FFT, but there are some pitfalls,
especially when computing a frequency response. Consider the following two cases:

1. DTFT of a finite-length signal, x[n], containing Lx points.

2. Frequency response: DTFTof an infinite-length signal (or impulse response) that has a rational
z-transform.

In the first case, the fft function is directly usable—the length of the FFT (NFFT) is merely
chosen to be equal to the number of frequency samples desired. This does not have to be the same
as the signal length, because fft will zero-pad when NFFT > Lx . However, in the (uncommon)
case where the user truly wants NFFT < Lx , the signal must be time-aliased before calling the fft
function.

5.3.2 A DTFT Function

We need two functions for computing the DTFT. The MATLAB function freqz will suffice for the
infinite signal case, but a new function will be needed to compute the DTFT of a finite-length signal.
It should be called dtft(h,N), and is essentially a layer that calls fft(h,N).

function [H,W] = dtft(h, N)
%DTFT calculate DTFT at N equally spaced frequencies

52 CHAPTER 5. SIGNAL PROCESSING IN MATLAB

% usage: H = dtft(h, N)
% h: finite-length input vector, whose length is L
% N: number of frequencies for evaluation over [-pi,pi)
% ==> constraint: N >= L
%
% H: DTFT values (complex)
% W: (2nd output) vector of freqs where DTFT is computed
%
N = fix(N);
L = length(h); h = h(:); %<-- for vectors ONLY !!!
if(N < L)

error(’DTFT: # data samples cannot exceed # freq samples’)
end
W = (2*pi/N) * [0:(N-1)]’;
mid = ceil(N/2) + 1;
W(mid:N) = W(mid:N) - 2*pi; % <--- move [pi,2pi) to [-pi,0)
W = fftshift(W);
H = fftshift(fft(h, N)); %<--- move negative freq components

Note that you don’t have to input the signal length L , because it can be obtained by finding the
length of the vector h. Furthermore, since the DTFT is periodic, the region from ω = π to 2π is
actually the negative frequency region, so the transform values just need to be re-ordered. This is
accomplished with the MATLAB function fftshift which exchanges the upper and lower halves
of a vector. If Hrot = fftshift(H) is applied to the DTFT vector, then the [−π, π] plot can
be produced by noting that Hrot(1) is the frequency sample for ω = −π .

When plotting in the transform domain it would be best to make a two-panel subplot as shown
in Fig. 5.1. The MATLAB program that produces Fig. 5.1 is given below:

%--- example of calculating and plotting a DTFT
%---
format compact, subplot(111)
a = 0.88 * exp(sqrt(-1)*2*pi/5);
nn = 0:40; xn = a.ˆnn;
[X,W] = dtft(xn, 128);
subplot(211), plot(W/2/pi, abs(X)); grid, title(’MAGNITUDE RESPONSE’)

xlabel(’NORMALIZED FREQUENCY’), ylabel(’| H(w) |’)
subplot(212), plot(W/2/pi, 180/pi*angle(X)); grid

xlabel(’NORMALIZED FREQUENCY’), ylabel(’DEGREES’)
title(’PHASE RESPONSE’)

5.3.3 Frequency Response: Rational Form

The frequency response calculation is needed quite often, particularly when doing IIR filter design or
when working with exponential signals. To handle this case, the function freqz(b,a,n) should
be used. The first two arguments to freqz are vectors containing the coefficients of the numerator
(b) and denominator (a) polynomials in the rational form. The third argument is the number of
frequency samples desired over the range 0 ≤ ω < π . Thus, freqz is actually evaluating the

5.3. IMPORTANT FUNCTIONS FOR DSP 53

0

2

4

6

8

10

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

NORMALIZED FREQUENCY

| H
(w

) |

MAGNITUDE RESPONSE

-100

-50

0

50

100

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

NORMALIZED FREQUENCY

D
E

G
R

E
E

S

PHASE RESPONSE

Figure 5.1: Two-panel frequency domain plot made via subplot.

54 CHAPTER 5. SIGNAL PROCESSING IN MATLAB

rational DTFT:

H(e jω) =

Nb�

�=0
b�e− jω�

Na�

k=0
ake− jωk

Actually, there are three versions of the freqz function:

[H, W] = freqz(b, a, n)
[H, W] = freqz(b, a, n, ’whole’)
[H, W] = freqz(b, a, W)

The first line is the case described above with one extension: two outputs can be returned—the
frequency response vector H, and a list of the radian frequencies W created from the uniform sampling
of the interval [0, π) by the n frequency samples. The second version has a fourth argument that
changes the frequency interval to the “whole” unit circle [0, 2π). The last case allows the user to input
the vector frequencies where the frequency response is to be evaluated, so options like logarithmic
spacing (logspace) could be done.

The group delay function (grpdelay) follows the same syntax as freqz. To plot magnitude
and phase and group delay of a filter:

[H, W] = freqz(b, a, n); %-- n equally spaced freqs
Hmag = abs(H);

Hphase = angle(H);
Hgroup = grpdelay(b, a, n);
semilogy(W, Hmag) %----- log y vs. linear x

plot(W, Hphase)
plot(W, Hgroup)

In version 3 of the Signal Processing Toolbox, the freqz function has an option so that it plots the
magnitude and phase when called with no output arguments.

The following table summarizes the all functions available for spectrum analysis. The function
freqs is a continuous-time version of freqz. In addition to the fft and freqz functions, there
is also a statistically based spectrum estimator called spectrum.

Fourier & Spectrum Analysis
dftmtx discrete Fourier transform matrix coefficients
fft Fast Fourier Transform (FFT)

fftshift swap halves of vectors—put DC in the middle
freqs Laplace transform frequency response B(s)/A(s)
freqz z-transform frequency response B(z)/A(z)

grpdelay group delay
ifft inverse FFT

specplot plot output of spectrum function
spectrum Welch method of power spectrum estimation

5.3. IMPORTANT FUNCTIONS FOR DSP 55

5.3.4 Windows

Windows are needed in spectrum analysis and in filter design. The following table shows the ones
in the signal processing tool box; most are named for the person who first published the particular
window.

Windows by Name
boxcar rectangular window—all ones
bartlett nearly the same as triang
blackman hamming kaiser
chebwin hanning triang

5.3.5 filter

The filtering of data is a primary activity in DSP. The implementation of an function to do filtering
offersmanypossiblities inMATLAB, but themost basic is thefilter functionwhichwill implement
either an FIR or IIR digital filter. Since filter is a built-in function it is quite efficient; in fact, the
conv function is based on filter. However, if a long FIR is to be implemented, it is better to use
an FFT-based method such as fftfilt to compute the convolution. Note: filter is not aware
of signal matrices; it can only filter one vector per call.

Filter Analysis and Implementation
fftfilt overlap-add filter implementation
filter direct-form IIR filter implementation
filtfilt zero-phase version of filter

y = filter(b, a, x) filters the data in vector xwith the filter described by coefficient vectors
a and b to create the filtered data vector y. The operation performed internally by filter is
described in the time-domain by a set of difference equations (executed in the order shown from top
to bottom): (give Fig for TDF-2)

y[n] = b1x[n] + v1[n−1]
v1[n] = b2x[n] + v2[n−1] − a2y[n]

... = ...
...

v�−1[n] = b�x[n] + v�[n−1] − a�y[n]
v�[n] = b�+1x[n] − a�+1y[n]

where � = max(na, nb). This is the Transposed Direct Form II structure. The input-output descrip-
tion of this filtering operation in the z-transform domain is a rational transfer function:

Y (z) = b(1) + b(2)z−1 + · · · + b(nb + 1)z−nb

1+ a(2)z−1 + · · · + a(na + 1)z−na
X (z)

If a(1) �= 1, the filter coefficients are normalized by a(1). If a(1) = 0, the input is in error.
When used with two left hand arguments, filter returns the final values of the states:

[y,vfinal] = filter(b, a, x)

When used with an extra right hand argument, initial conditions for the states are specified:

56 CHAPTER 5. SIGNAL PROCESSING IN MATLAB

y = filter(b, a, x, vinit)

The size of the initial/final condition vector is max(na, nb).
y = filtfilt(b,a,x) performs zero-phase digital filtering by processing the input data

in both the forward and reverse directions, see problem 5.39 in [Oppenheim & Schafer]. After
filtering in the forward direction, the filtered sequence is reversed and run back through the filter.
The resulting sequence has precisely zero phase distortion and double the filter order. Care is taken
to minimize startup and ending transients by matching initial conditions. See the M-file for details.

Example: Perform the convolution of h and x by setting the a vector equal to 1. The
input signal x must be zero padded to get the entire output of the convolution.

y = filter(h, 1, [x zeros(1, length(h)-1)]);

NOTE: this is how the conv function actually works.

5.3.6 Filter Design

The design of frequency-selective digital filters is a primary activity in DSP. MATLAB offers many
functions to perform the classic design methods for both finite impulse response (FIR) and infinite
impulse response (IIR) filters.

Band Edge Frequency Scaling

The cutoff frequencies in all MATLAB filter design functions are normalized to π . Thus a vector
such as ff = [0 0.4 0.6 1] specifies band edge frequencies at ω = {0, 0.4π, 0.6π, π}.

Filter Design Steps

The user must do three things:

1. Make up the filter specifications in terms of band edges and desired values.

2. Select the filter order using a MATLAB to predict the order from the specs. For example,
ellipord will predict the order of an elliptic filter.

3. Do the actual design. Call a function like ellip which in turn will first call ellipap to
generate the analog prototype and then call bilinear to transform the filter from analog to
digital. Since functions exist for the design of analog prototypes, MATLAB can also design
the classical analog filters.

Give a reference.

Need a Detailed Example

Need a Filter Design Exercise

IIR Filter Design

For the most part, IIR digital filter design relies on the transformation of “classic” analog filter,
e.g., Chebyshev, Elliptic, etc. The filter design process involves several steps: first the filter order
must be estimated from the given specs, then the analog filter is determined, next the analog filter is

Beyza Ermis

5.3. IMPORTANT FUNCTIONS FOR DSP 57

transformed to a digital filter via the bilinear transformation, and finally the digital filter might have
to be converted from a lowpass design to another form such as bandpass.

IIR Digital Filter Design
butter Butterworth digital filter design
buttord Butterworth filter order selection
cheby1 Chebyshev type I
cheb1ord estimate Chebyshev filter order
cheby2 Chebyshev type II
cheb2ord estimate Chebyshev filter order
ellip elliptic (Cauer) filter design

ellipord estimate elliptic filter order
prony Prony’s time-domain IIR filter design

yulewalk Yule-Walker filter design

Analog Lowpass Filter Prototypes
buttap Butterworth filter prototype
cheb1ap Chebyshev type I filter proto (passband ripple)
cheb2ap Chebyshev type II filter proto (stopband ripple)
ellipap elliptic filter prototype

Filter Transformations (IIR)
bilinear bilinear transformation with optional pre-warping
lp2bp lowpass to bandpass analog filter transformation
lp2bs lowpass to bandstop
lp2hp lowpass to highpass
lp2lp lowpass to lowpass
ss2zp state-space to zero-pole (rational) conversion
tf2ss transfer function to state-space
zp2ss zero-pole to state-space

FIR Filter Design

The Kaiser window produces reasonably good FIR filters, and can be used in fir1 and fir2 via

h = fir1(L, omega_cutoff, kaiser(L+1,beta))

NOTE: the length of the FIR filter returned from fir1 is NOT L; it is actually L+1. The parameter
L is actually the order of the polynomial that represents the FIR filter. For optimal Chebyshev
approximation of FIR linear phase digital filters, use the Remez exchange algorithm, remez.

FIR Filter Design
fir1 window based FIR design—lowpass, highpass, bandpass, bandstop
fir2 window based FIR design—arbitrary response
remez Parks-McClellan optimal FIR filter design (Remez exchange algorithm)

remezord (version 3 SP only) predict P-M FIR filter order

Need an example

58 CHAPTER 5. SIGNAL PROCESSING IN MATLAB

5.3.7 Statistical Signal Processing Functions

Many practical signal processing simulations must use models of additive noise. The rand matrix
generator can produce such signals. The probability distribution of the noise generator can be
either unifrom or Gaussian. (In version 4, separate functions are provided for Gaussian (randn)
and uniform (rand) random distributions. Related functions for processing random signals are
listed in the table below. The spectrum function implements the method of averaging modified
periodograms to obtain a well-behaved power spectrum estimate of a noisy signal.

Statistical Functions on Signals
detrend linear trend removal
hist histogram
mean average value
median middle value
rand Uniform (or Gaussian) random noise

rand(’normal’) sets rand to Gaussian
rands (version 4 only) Gaussian random noise

specplot plot output of spectrum function
spectrum Welch method of power spectrum estimation

std standard deviation

Correlation and Convolution
conv convolution

corrcoef correlation coefficients
cov covariance matrix (sum of outer products)

deconv deconvolution (polynomial division)
xcorr cross-correlation function
xcov covariance function

5.3.8 Advanced DSP Functions
Signal Modeling

invfreqs analog filter fit to frequency response
invfreqz discrete filter fit to frequency response
prony Prony’s discrete filter fit to time response

Decimation and Interpolation
decimate Lowpass FIR decimation
interp Lowpass interpolation
spline cubic spline interpolation

2-D Signal Processing
conv2 2-D convolution
fft2 2-D FFT

fttshift swap quadrants—put origin in the middle
ifft2 inverse 2-D FFT
xcorr2 2-D cross-correlation

5.3. IMPORTANT FUNCTIONS FOR DSP 59

Cepstrum Processing
cceps complex cepstrum
hilbert Hilbert transform
rceps real cepstrum & min phase reconstruction
unwrap unwrap phase

5.3.9 Miscellaneous Utility Functions

These functions do not fit any classification, so they are lumped together as miscellaneous odds and
ends.

Signal Processing Utilities
abs magnitude of complex signal (absolute value)
angle phase angle of complex signal
convmtx convolution matrix
cplxpair order vector into complex pairs
cumsum cumulative sum (i.e., convolve with u[n])
diff first difference (i.e., convolve with δ[n] − δ[n − 1])

sawtooth generate a triangle wave function
square generate a square wave function

60 CHAPTER 5. SIGNAL PROCESSING IN MATLAB

Chapter 6

Control Toolbox

6.1 Feedback System

Need block diagram of feedback system with transfer function

G(s)
1+ KG(s)H(s)

(6.1)

This does depend on where the gain K is located and on the specific forward gain and loop gain.

6.1.1 Transfer Functions

6.1.2 Partial Fractions

6.2 State-Space Representation

A single-input, single-output system (SISO)

ẋ = Ax + bu
y = Cx + du

Therefore, in MATLAB we must define the four matrices A, b, C and d to specify the system.
Dimension of x is same as number of poles.

Multi-Input, Multi-Output

supported with an arg that tells which input to use. Does it have to be single output?

6.2.1 Transfer Functions from State-Space

6.2.2 Conversion Between Forms

Various utilities such ss2tf, tf2ss,

61

62 CHAPTER 6. CONTROL TOOLBOX

6.2.3 Digital Control

A single-input, single-output system (SISO)

x[n + 1] = Ax[n] + bu[n]
y[n] = Cx[n] + du[n]

6.3 Time-Domain Response: Continuous-Time
Need a simulation.

6.3.1 Simulated Response of Differential Equation

Simulation choice of delta t. ODE solvers

6.3.2 Step Response

There is a functions called step

6.3.3 Impulse Response

Find step response of sH(s). May have to attach an additional state variable

6.3.4 Ramp Response

Again, use step but apply to H(s)/s

6.4 Time-Domain Response: Discrete-Time

6.4.1 Digital Filtering

Refer to DSP for explanation of filter. Plotting with comb or stem

6.4.2 Step Response

Is there a step function? NO you probably cumsum the impulse response.

6.4.3 Impulse Response

Do this one directly with filter

6.5 Frequency Response
freqz for digital? bode for continuous.

6.5.1 Bode Plots

bode is a lot like freqz

6.6. NYQUIST PLOTS 63

6.6 Nyquist Plots
Explain polar notation. Say a wee bit about phase margin? i.e., why are you making a Nyquist plot?
axis(‘square’) to see true unit circle.

6.7 Root Locus
Need numerator and denom of G(s)H(s) in

G(s)
1+ KG(s)H(s)

(6.2)

Then rlocuswill vary K and plot roots. Sometimes its choice of K may be flaky Also, it probably
does lots of rooting internally.

6.7.1 Stability Tests

Just root. But maybe the toolbox has some built in.

6.8 Linear Quadratic State Estimation
This should be very brief. Just indicate that the capability exists.

Then do we make lists of the rest of it?

6.9 Optimization Toolbox

6.9.1 Least-Squares Inverse

6.9.2 FMINS

Doing an feval to pass function definition.

6.9.3 Non-Linear Minimization

6.9.4 Non-negative Least-Squares

6.9.5 Linear Programming

64 CHAPTER 6. CONTROL TOOLBOX

Chapter 7

Symbolic Toolbox

Nothing here (27-March-94)

65

66 CHAPTER 7. SYMBOLIC TOOLBOX

Chapter 8

Quick Reference Guide

8.1 Summary of Available Help Screens

The help messages obtained using the help command for many commomly used functions are
included in section 4.3. To see the help message for any particular function, such as the FFT, type

>> help fft

For a listing of the functions for which help is available, type

>> help

The following list describes the built-inMATLAB functions andM-files forwhich help is available
(not including any site-specific functions that may also be available):

Matlab built-in functions:

help & clock exist hess memory rcond string
[| conj exit hold mesh real subplot
] ˜ contour exp home meta relop sum
(abs cos expm ident min rem svd
) all cumprod eye if nan return tan
. ans cumsum feval imag nargin round text
, any dc2sc fft inf norm save title
; acos delete filter input ones sc2dc type
% asin det find inv pack schur what
! atan diag finite isnan pause script while
: atan2 diary fix isstr pi semilogx who
’ axis dir floor keyboard plot semilogy xlabel
+ balance disp flops load polar setstr ylabel
- break echo for log polyline shg zeros
* casesen eig format loglog polymark sign
\ ceil else fprintf logop prod sin
/ chdir elseif function ltifr prtsc size
ˆ chol end getenv ltitr qr sort
< clc eps ginput lu quit sprintf
> clear error global magic qz sqrt

67

68 CHAPTER 8. QUICK REFERENCE GUIDE

= clg eval grid max rand startup

Strike any key to continue ...

Continuing, produces the following list of M-files.

Strike any key to continue ...Directory of M-files in \matlab

bench demo demolist info intro matlab readme

acosh cosh fitfun hex2num log10 nersolv quadstp std
angle cov fliplr hilb logm nestop quiver strcmp
asinh cplxpair flipud hist logspace nnls rank subspace
atanh date fmin humps mean null rat table1
backsub dec2hex fmins ieee median num2str ratmovie table2
bar deconv fminstep ifft membrane ode23 reshape tanh
bessel diff fplot ifft2 menu ode45 resi2 toeplitz
bessela eigmovie fsolve int2str meshdom orth residue trace
besselh ellipj funm interp1 mkpp pascal roots tril
besseln ellipk fzero interp2 nebroyuf pinv roots1 triu
blanks erf gallery interp3 nechdcmp poly rose unmkpp
cdf2rdf errorbar gamma interp4 neconest polyder rot90 unwrap
clabel etime gammac inverf nefdjac polyfit rref vander
compan expm1 gammai invhilb nefn polyval rrefmovi vdpol
compass expm2 gradient isempty neinck polyvalm rsf2csf why
computer expm3 gtext kron nelnsrch ppval sinh
cond feather hadamard laguer nemodel quad spline
conv fft2 hankel length neqrdcmp quad8 sqrtm
corrcoef fftshift hex2dec linspace neqrsolv quad8stp stairs

And continuing further displays a list of M-files that are especially useful for signal processing.

Directory of M-files in \matlab\signal

abcdchk cheb1ap decimate fir1 invfreqs nextpow2 series xcorr2
bartlett cheb1ord denf fir2 invfreqz numf specplot xcov
bilinear cheb2ap detrend freqs kaiser polystab spectrum yulewalk
blackman cheb2ord dftmtx freqz kratio prony square zp2ss
boxcar chebwin ellip grpdelay lp2bp rceps ss2zp
buttap cheby1 ellipap hamming lp2bs rcunwrap tf2ss
butter cheby2 ellipord hanning lp2hp readme2 triang
buttord conv2 fftfilt hilbert lp2lp remez vratio
cceps convmtx filtfilt interp nargchk remezdd xcorr

There will also be a list of the M-files in your local area. The list in your local area can also be
obtained by typing what.

8.2. SUMMARY OF FREQUENTLY USED COMMANDS 69

8.2 Summary of Frequently Used Commands

A’ complex conjugate transpose of A
A.’ transpose of A
A+B matrix sum
A*B matrix product
A/B right inverse, same as AB−1, if B is invertible
A\B left inverse, same as A−1B, if A is invertible
x = A\b solve Ax = b

use least-squares pseudo-inverse, if necessary
Aˆn A ∗ A ∗ A ∗ . . . ∗ A, n-fold matrix product
abs(x) returns the magnitude of the elements of x
bar() draws a bar graph
contour(A) contour plot
demo run the built-in MATLAB demos
det(A) determinant of A
diag(A) extract diagonal elements of A and put them in a vector
eig(A) eigenvalues of A, output in a column vector
[V,D] = eig(A) eigen-analysis of A

diagonal elements of D are the eigenvalues
column vectors of V are the eigenvectors

exp(x) is the exponential of the elements of x, e to the x
eye(n) n × n identity matrix
fft(A,n) 1-D FFT of each column of A, length = n
filter(b,a,x) filter x[n] using pole-zero system H(z) = B(z)/A(z)
format compact single space between display lines
format long display answers to 16 decimal places, short uses 5 places
freqz(b,a,n) frequency response of system H(z) = B(z)/A(z)
hamming(n) Hamming window of length n
help name ask for help on the function called name
hold on hold the plot in order to add more curves

hold off releases the plot
imag(x) returns the imaginary-parts of the elements of x
inv(A) inverse of A
kaiser(n,alpha) Kaiser window
length(x) returns the length of the vector x
mesh(A) 3-D mesh plot, using the matrix entries as amplitude
norm(x) 2-norm of the vector x, i.e., xHx

also works for a matrix input
ones(m,n) m × n matrix of ones, ones(n) gives n × n matrix
plot(x,y) x–y plot, plot(y) takes the x-axis to be indices
polar(ang,rad) polar plot given vectors of angles and radii
rand(m,n) m × n matrix of (uniform) random numbers
rank(A) rank of matrix A
real(x) returns the real-parts of the elements of x
remez() Remez exchange method for optimal FIR

linear phase filter design

70 CHAPTER 8. QUICK REFERENCE GUIDE

roots(c) compute roots of polynomial whose coefficients are c
round(x) rounds the elements of x to the nearest integers
size(A) returns the number of rows and columns in A
sqrt(x) returns the square roots of the elements of x
svd(A) singular value decomposition A = UH�V
title(string) title the plot
triang(n) Triangular window
xlabel(string) label the x-axis
ylabel(string) label the y-axis
zeros(m,n) m × n matrix of zeros, ones(n) gives n × n matrix

8.3 Help Screens for Frequently Used Commands

>> help ’

’ Matrix transpose. X’ is the complex conjugate transpose of X.
X.’ is the non-conjugate transpose.
Quote. ’ANY TEXT’ is a vector whose components are the
ASCII codes for the characters. A quote within the text
is indicated by two quotes.

>> help +

+ Addition.
X + Y adds matrices X and Y. X and Y must have the same
dimensions unless one is a scalar. A scalar can be added
to anything.

>> help *

* Multiplication.
X*Y is the matrix product of X and Y. Any scalar
(1-by-1 matrix) may multiply anything. Otherwise, the number
of columns of X must equal the number of rows of Y.

X.*Y denotes element-by-element multiplication. X and Y
must have the same dimensions unless one is a scalar.
A scalar can be multiplied into anything.

>> help /

/ Right division.
B/A is the matrix division of A into B, which is roughly the
same as B*INV(A) , except it is computed in a different way.
More precisely, B/A = (A’\B’)’. See \.

B./A denotes element-by-element division. A and B

8.3. HELP SCREENS FOR FREQUENTLY USED COMMANDS 71

must have the same dimensions unless one is a scalar.
A scalar can be divided with anything.

WARNING: 3./A is NOT the same as 3 ./A because in the first
case the dot is sucked up by the 3 as a decimal point causing
matrix division, while in the second case the dot is
associated with the / for elementwise division.

>> help \

\ Left division.
A\B is the matrix division of A into B, which is roughly the
same as INV(A)*B , except it is computed in a different way.
If A is an N-by-N matrix and B is a column vector with N
components, or a matrix with several such columns, then
X = A\B is the solution to the equation A*X = B computed by
Gaussian elimination. A warning message is printed if A is
badly scaled or nearly singular. A\EYE(A) produces the
inverse of A. If A is an M-by-N matrix with M < or > N and B
is a column vector with M components, or a matrix with several
such columns, then X = A\B is the solution in the least
squares sense to the under- or overdetermined system of
equations A*X = B. The effective rank, K, of A is determined
from the QR decomposition with pivoting. A solution X is
computed which has at most K nonzero components per column. If
K < N this will usually not be the same solution as PINV(A)*B.
A\EYE(A) produces a generalized inverse of A.
See / for the meaning of .\.

>> help ˆ

ˆ Powers.
Z = Xˆy is X to the y power if y is a scalar. If y is an
integer greater than one, the power is computed by repeated
multiplication. For other values of y the calculation
involves eigenvalues and eigenvectors.
Z = xˆY is x to the Y power, if Y is a matrix and x is a
scalar, computed using eigenvalues and eigenvectors.
Z = XˆY, where both X and Y are matrices, is an error.

Z = X.ˆY denotes element-by-element powers. X and Y
must have the same dimensions unless one is a scalar.
A scalar can operate into anything.

>> help abs

ABS ABS(X) is the absolute value of the elements of X. When

72 CHAPTER 8. QUICK REFERENCE GUIDE

X is complex, ABS(X) is the complex modulus (magnitude) of
the elements of X. See also ANGLE.

>> help bar

BAR Bar graph.
BAR(Y) draws a bar graph of the elements of vector Y.
BAR(X,Y) draws a bar graph of the elements in vector Y at
the locations specified in X. The X-values must be in
ascending order. If the X-values are not evenly spaced, the
interval chosen is not symmetric about each data point.
Instead, the bars are drawn midway between adjacent X-values.
The endpoints simply adopt the internal intervals for the
external ones needed.
[XX,YY] = BAR(X,Y) does not draw a graph, but returns vectors
X and Y such that PLOT(XX,YY) is the bar chart.
See also STAIRS and HIST.

>> help contour

CONTOUR Contour plot.
CONTOUR(Z) is a contour plot of matrix Z treating the values
in Z as heights above a plane. Element Z(1,1) is displayed
in the upper left corner of the contour.
CONTOUR(Z,N) draws N contour levels, overriding the default
automatic value.
CONTOUR(Z,V) draws LENGTH(V) contour lines at the locations
specified in vector V.
CONTOUR(Z,N,X,Y), where X and Y are vectors, specifies the
X- and Y-axes used on the plot. CONTOUR(Z,V,X,Y) works too.
CONTOUR(...,’linetype’) draws with the color and linetype
specified, as in the PLOT command.
C = CONTOUR(...) returns a two row matrix of contour lines.
Each contiguous drawing segment contains the value of the
contour, the number of (x,y) drawing pairs, and the pairs
themselves. The segments are appended end-to-end as

C = [level#1 x1 x2 x3 ... level#2 x2 x2 x3 ...;
#pairs1 y1 y2 y3 ... #pairs2 y2 y2 y3 ...]

See also CLABEL, MESH, GRADIENT, and QUIVER.

>> help demo

DEMO brings up a menu of the available demonstrations.

>> help det

DET DET(X) is the determinant of the square matrix X.

8.3. HELP SCREENS FOR FREQUENTLY USED COMMANDS 73

>> help diag

DIAG If V is a row or column vector with N components,
DIAG(V,K) is a square matrix of order N+ABS(K) with the
elements of V on the K-th diagonal. K = 0 is the main
diagonal, K > 0 is above the main diagonal and K < 0 is
below the main diagonal. DIAG(V) simply puts V on the
main diagonal. For example,
DIAG(-M:M) + DIAG(ONES(2*M,1),1) + DIAG(ONES(2*M,1),-1)
produces a tridiagonal matrix of order 2*M+1.

If X is a matrix, DIAG(X,K) is a column vector formed from
the elements of the K-th diagonal of X. DIAG(X) is the main
diagonal of X. DIAG(DIAG(X)) is a diagonal matrix.

>> help eig

EIG Eigenvalues and eigenvectors.
EIG(X) is a vector containing the eigenvalues of a square
matrix X.
[V,D] = EIG(X) produces a diagonal matrix D of
eigenvalues and a full matrix V whose columns are the
corresponding eigenvectors so that X*V = V*D.

[V,D] = EIG(X,’nobalance’) performs the computation with
balancing disabled, which gives better results for certain
ill-conditioned problems.

Generalized eigenvalues and eigenvectors.
EIG(A,B) is a vector containing the generalized eigenvalues
of square matrices A and B.
[V,D] = EIG(A,B) produces a diagonal matrix D of general-
ized eigenvalues and a full matrix V whose columns are the
corresponding eigenvectors so that A*V = B*V*D.

>> help exp

EXP EXP(X) is the exponential of the elements of X, e to the X.

>> help eye

EYE Identity matrix. EYE(N) is the N-by-N identity matrix.
EYE(M,N) is an M-by-N matrix with 1’s on the diagonal and
zeros elsewhere. EYE(A) is the same size as A.

>> help fft

74 CHAPTER 8. QUICK REFERENCE GUIDE

FFT FFT(X) is the discrete Fourier transform of vector X. If the
length of X is a power of two, a fast radix-2 fast-Fourier
transform algorithm is used. If the length of X is not a
power of two, a slower non-power-of-two algorithm is employed.
FFT(X,N) is the N-point FFT, padded with zeros if X has less
than N points and truncated if it has more.
If X is a matrix, the FFT operation is applied to each column.
See also IFFT, FFT2, and IFFT2.

>> help filter

FILTER Digital filter.
Y = FILTER(B, A, X) filters the data in vector X with the
filter described by vectors A and B to create the filtered
data Y. The filter is a ‘‘Direct Form II Transposed’’
implementation of the standard difference equation:

y(n) = b(1)*x(n) + b(2)*x(n-1) + ... + b(nb+1)*x(n-nb)
- a(2)*y(n-1) - ... - a(na+1)*y(n-na)

[Y,Zf] = FILTER(B,A,X,Zi) gives access to initial and final
conditions, Zi and Zf, of the delays.
See also FILTFILT.

>> help format

FORMAT Set output format. All computations are done in double
precision. FORMAT may be used to switch between different
display formats as follows:
FORMAT Default. Same as SHORT.
FORMAT SHORT Scaled fixed point format with 5 digits.
FORMAT LONG Scaled fixed point format with 15 digits.
FORMAT SHORT E Floating point format with 5 digits.
FORMAT LONG E Floating point format with 15 digits.
FORMAT HEX Hexadecimal format.
FORMAT + Compact format. The symbols +, - and blank

are printed for positive, negative and zero
elements. Imaginary parts are ignored.

FORMAT BANK Fixed format for dollars and cents.
FORMAT COMPACT Suppress extra line-feeds.
FORMAT LOOSE Puts the extra line-feeds back in.

>> help freqz

FREQZ Z-transform digital filter frequency response. When N is an
integer, [H,W] = FREQZ(B,A,N) returns the N-point frequency
vector W and the N-point complex frequency response vector G

8.3. HELP SCREENS FOR FREQUENTLY USED COMMANDS 75

of the filter B/A:
-1 -nb

jw B(z) b(1) + b(2)z + + b(nb+1)z
H(e) = ---- = ----------------------------

-1 -na
A(z) 1 + a(2)z + + a(na+1)z

given numerator and denominator coefficients in vectors B and
A. The frequency response is evaluated at N points equally
spaced around the upper half of the unit circle. To plot
magnitude and phase of a filter:

[h,w] = freqz(b,a,n);
mag = abs(h); phase = angle(h);
semilogy(w,mag), plot(w,phase)

FREQZ(B,A,N,’whole’) uses N points around the whole unit circle.
FREQZ(B,A,W) returns the frequency response at frequencies
designated in vector W, normally between 0 and pi. (See
LOGSPACE to generate W). See also YULEWALK, FILTER, FFT,
INVFREQZ, and FREQS.

>> help hamming

HAMMING HAMMING(N) returns the N-point Hamming window.

>> help help

HELP HELP lists all help topics, starting with the built-in
functions and continuing with the M-files in the various
directories on disk.
HELP topic gives help on the topic.
HELP HELP obviously prints this message.
HELP word where ’word’ is a filename, displays the first
comment lines in the M-file ’word.m’.

>> help hold

HOLD Hold the current graph on the screen. Subsequent PLOT com-
mands will add to the plot, using the already established
axis limits, and retaining the previously plotted curves.
HOLD ON turns on holding, HOLD OFF turns it off, and HOLD,
by itself, toggles the HOLD state.

>> help imag

IMAG IMAG(X) is the imaginary part of X.
See I or J to enter complex numbers.
Imaginary numbers are not entered into MATLAB using the
letters I or J as might be expected. This is because I and

76 CHAPTER 8. QUICK REFERENCE GUIDE

J are often used as indices. To enter imaginary numbers,
SQRT(-1) is used.
For example, 3+2i is entered as 3+2*sqrt(-1). Alternatively,
this could be done as i = SQRT(-1); 3+2*i.

>> help inv

INV INV(X) is the inverse of the square matrix X. A warning
message is printed if X is badly scaled or nearly
singular.

>> help kaiser

KAISER KAISER(N,beta) returns the BETA-valued N-point Kaiser window.

>> help length

LENGTH LENGTH(X) returns the length of vector X. It is equivalent
to MAX(SIZE(X)).

>> help mesh

MESH Mesh surface. MESH(Z) produces a 3-dimensional mesh surface
‘‘picture’’ of matrix Z using the values in Z as heights above
a plane. See MESHDOM to plot functions of two variables.

MESH(Z,M) specifies a view-point. The two-element vector M =
[AZ EL] contains AZ, the azimuth or horizontal rotation, and
EL, the vertical elevation (both in degrees). Azimuth revolves
about the z-axis, with positive values indicating
counter-clockwise rotation of the view-point (clockwise
rotation of the object). Positive values of elevation
correspond to moving above the object; negative values move
below. Here are some examples:

EL = 90 is directly overhead.
M = [0 0] looks directly up the first column

of Z, from the Z(m,1) element.
AZ = 180 is behind the matrix.
M = [-37.5 30] is the default.

MESH(Z,S) and MESH(Z,M,S) control the scale factors used to
set the X, Y and Z axes. The vector S is defined as S = [sx sy sz],
where the three scalars, relative to each other, set the size
of the object in each of the three dimensions. See also CONTOUR.

>> help norm

8.3. HELP SCREENS FOR FREQUENTLY USED COMMANDS 77

NORM For matrices..
NORM(X) is the largest singular value of X
NORM(X,1) is the 1-norm of X, the largest column sum,

MAX(SUM(ABS(REAL(X))+ABS(IMAG(X)))
NORM(X,2) is the same as NORM(X)
NORM(X,inf) is the infinity norm of X, the largest row sum.

MAX(SUM(ABS(REAL(X’))+ABS(IMAG(X’)))
NORM(X,’fro’) is the F-norm, SQRT(SUM(DIAG(X’*X)))
For vectors..
NORM(V,P) = SUM(ABS(V)ˆP)ˆ(1/P)
NORM(V) = NORM(V,2)
NORM(V,inf) = MAX(ABS(V))
NORM(V,-inf) = MIN(ABS(V))

>> help ones

ONES All ones. ONES(N) is an N-by-N matrix of ones. ONES(M,N)
is an M-by-N matrix of ones. ONES(A) is the same size as
A and all ones.

>> help plot

PLOT Plot vectors or matrices. PLOT(X,Y) plots vector X versus
vector Y. If X or Y is a matrix, then the vector is plotted
versus the rows or columns of the matrix, whichever lines
up. PLOT(X1,Y1,X2,Y2) is another way of producing multiple
lines on the plot. PLOT(X1,Y1,’:’,X2,Y2,’+’) uses a
dotted line for the first curve and the point symbol +
for the second curve. Other line and point types are:

solid - point . red r
dashed -- plus + green g
dotted : star * blue b
dashdot -. circle o white w

x-mark x invisible i
arbitrary c1, c15, etc.

PLOT(Y) plots the columns of Y versus their index. PLOT(Y)
is equivalent to PLOT(real(Y),imag(Y)) if Y is complex.
In all other uses of PLOT, the imaginary part is ignored.
See SEMI, LOGLOG, POLAR, GRID, SHG, CLC, CLG, TITLE, XLABEL
YLABEL, AXIS, HOLD, MESH, CONTOUR, SUBPLOT.

>> help polar

POLAR POLAR(THETA, RHO) makes a plot using polar coordinates of

78 CHAPTER 8. QUICK REFERENCE GUIDE

the angle THETA, in radians, versus the radius RHO.
See GRID for polar grid lines and PLOT for how to obtain
multiple lines and different line-types.

>> help rand

RAND Random numbers and matrices. RAND(N) is an N-by-N matrix
with random entries. RAND(M,N) is an M-by-N matrix with
random entries. RAND(A) is the same size as A. RAND with
no arguments is a scalar whose value changes each time
it is referenced.

Ordinarily, random numbers are uniformly distributed in
the interval (0.0,1.0). RAND(’normal’) switches to a
normal distribution with mean 0.0 and variance 1.0.
RAND(’uniform’) switches back to the uniform distribution.
RAND(’dist’) returns a string containing the current
distribution, either ’uniform’ or ’normal’.

RAND(’seed’) returns the current value of the seed for the
generator. RAND(’seed’,n) sets the seed to n.
RAND(’seed’,0) resets the seed to 0, its value when MATLAB
is first entered.

>> help rank

RANK Rank. K = RANK(X) is the number of singular values of X
that are larger than MAX(SIZE(X)) * NORM(X) * EPS.
K = RANK(X,tol) is the number of singular values of X that
are larger than tol .

>> help real

REAL REAL(X) is the real part of X. See also IMAG and ABS.

>> help remez

REMEZ Parks-McClellan optimal equirriple FIR filter design.
B = REMEZ(N,F,M) designs an N’th order FIR digital filter,
with the frequency response specified by vectors F and M,
and returns the filter coefficients in length N+1 vector B.
Vectors F and M specify the frequency and magnitude
breakpoints for the filter such that PLOT(F,M) would show a
plot of the desired frequency response. The elements of M must
appear in equal-valued pairs. The frequencies in F must be
between 0.0 < F < 1.0, with 1.0 corresponding to half the
sample rate. They must be in increasing order, start with 0.0,

8.3. HELP SCREENS FOR FREQUENTLY USED COMMANDS 79

and end with 1.0.
B = REMEZ(N,F,M,W) uses vector W to specify weighting in each
of the pass or stop bands in vectors F and M.
B = REMEZ(N,F,M,FTYPE) or B = REMEZ(N,F,M,W,FTYPE), where
FTYPE is the string ’Hilbert’ or ’differentiator’, designs
Hilbert transformers or differentiators, respectively. For
the Hilbert case, the lowest frequency should not be 0.

See also FIR1, FIR2, BUTTER, CHEBY1, CHEBY2, YULEWALK, FREQZ
and FILTER.

>> help roots

ROOTS Find polynomial roots. ROOTS(C) computes the roots of the
polynomial whose coefficients are the elements of the
vector C. If C has N+1 components, the polynomial is
C(1)*XˆN + ... + C(N)*X + C(N+1). See ROOTS1 and POLY.

>> help round

ROUND ROUND(X) rounds the elements of X to the nearest
integers.

>> help size

SIZE If X is an M-by-N matrix, then SIZE(X) is [M, N].
SIZE can also be used with a multiple assignment,

[M, N] = SIZE(X).

>> help sqrt

SQRT SQRT(X) is the square root of X. Complex results are
produced if X is not positive. See also SQRTM.

>> help svd

SVD Singular value decomposition. [U,S,V] = SVD(X) produces a
diagonal matrix S , of the same dimension as X and with
nonnegative diagonal elements in decreasing order, and
unitary matrices U and V so that X = U*S*V’.
By itself, SVD(X) returns a vector containing the singular
values.
[U,S,V] = SVD(X,0) produces the ‘‘economy size’’
decomposition. If X is m-by-n with m > n, then only the
first n columns of U are computed and S is n-by-n.

>> help title

80 CHAPTER 8. QUICK REFERENCE GUIDE

TITLE TITLE(’text’) writes the text at the top of the current
plot as a title.

>> help triang

TRIANG TRIANG(N) returns the N-point triangular window.

>> help xlabel

XLABEL XLABEL(’text’) writes the text on the current plot beneath
the x-axis.

>> help ylabel

YLABEL YLABEL(’text’) writes the text on the current plot beside
the y-axis.

>> help zeros

ZEROS All zeros. ZEROS(N) is an N-by-N matrix of zeros.
ZEROS(M,N) is an M-by-N matrix of zeros. ZEROS(A) is the
same size as A and all zeros.

Chapter 9

MATLAB Commands by Function

General
help help facility
demo run demonstrations
who list variables in memory
what list M-files on disk
size row and column dimensions
length vector length
clear clear workspace
computer type of computer
Ctrl-C local abort
quit terminate program
exit same as quit

Matrix Operators Array Operators
+ addition + addition
- subtraction - subtraction
* multiplication .* multiplication
/ right division ./ right division
\ left division .\
ˆ power .ˆ power
’ conjugate transpose .’ transpose

Relational and Logical Operators
< less than & AND
<= less than or equal | OR
> greater than ˜ NOT
>= greater than or equal
== equal
˜= not equal

81

82 CHAPTER 9. MATLAB COMMANDS BY FUNCTION

Special Characters
= assignment statement
[used to form vectors and matrices
] see [
(arithmetic expression precedence
) see (
. decimal point
... continue statement to the next line
, separate subscripts and function arguments
; end rows, suppress printing
% comments
: subscripting, vector generation
! execute operating system command

Special Values
ans answer when expression is not assigned
eps floating point precision
pi π

i,j
√

−1
inf ∞
NaN Not-a-Number
clock wall clock
date date
flops floating point operation count
nargin number of function input arguments
nargout number of function output arguments

Text and Strings
abs convert string to ASCII value
eval evaluate text macro
num2str convert number to string
int2str convert integer to string
setstr set flag indicating matrix is a string
sprintf convert number to a string
isstr detect string variables
strcmp compare string values
hex2num convert hexadecimal string to number

Graph Paper
plot linear X-Y plot
loglog loglog X-Y plot
semilogx semi-log X-Y plot
semilogy semi-log X-Y plot
polar polar plot
mesh 3-dimensional plot
contour contour plot
meshdom domain for mesh plots
bar bar charts
stairs stairstep graphs
errorbar add errorbars

83

Graph Annotation
title plot title
xlabel x-axis label
ylabel y-axis label
grid draw grid lines
text arbitrarily positioned text
gtext mouse-positioned text
ginput graphics input

Graph Window Control
axis manual axis scaling
hold hold plot on screen
shg show graph screen
clg clear graph screen
subplot split graph window

Command Window
clc clear command screen
home home cursor
format set output display format
disp display matrix or text
fprintf print formatted number
echo enable command echoing

Control Flow
if conditionally execute statement
elseif used with if
else used with if
end terminate if, for, while
for repeat statements a number of times
while do while
break break out of for and while loops
return return from functions
pause pause until key press

Programming and M-files
input get numbers for keyboard
keyboard call keyboard as M-file
error display error message
function define function
eval interpret text in variables
feval evaluate function given by string
echo enable command echoing
exist check if variables exist
casesen set case sensitivity
global define global variables
startup startup M-file
getenv get environment string
menu select item from menu
etime elapsed time

84 CHAPTER 9. MATLAB COMMANDS BY FUNCTION

Disk Files
chdir change current directory
delete delete file
diary diary of the session
dir directory of files on disk
load load variables from file
save save variables on file
type list function or file
what show M-files on disk
fprintf write to a file
pack compact memory via save

Relational and Logical Functions
any logical conditions
all logical conditions
find find array indices of logical values
exist check if variables exist
isnan detect NaN’s
finite detect infinities
isempty detect empty matrices
isstr detect string variables
strcmp compare string variables

Trigonometric Functions
sin sine
cos cosine
tan tangent
asin arcsine
acos arccosine
atan arctangent
atan2 four quadrant arctangent
sinh hyberbolic sine
cosh hyberbolic cosine
tanh hyperbolic tangent
ashinh hyperbolic arcsine
acosh hyperbolic arccosine
atanh hyperbolic arctangent

85

Elementary Math Functions
abs absolute value or complex magnitude
angle phase angle
sqrt square root
real real part
imag imaginary part
conj complex-conjugate
round round to nearest integer
fix round towards zero
floor round towards -∞
ceil round towards∞
sign signum function
rem remainder or modulus
exp exponential base e
log natural logarithm
log10 log base 10

Special Functions
bessel Bessel function
gamma complete and incomplete gamma functions
rat rational approximation
erf error function
inverf inverse error function
ellipk complete elliptic integral of the first kind
ellipj Jacobian elliptic functions

Polynomials
poly characteristic polynomial
roots polynomial roots - companion matrix method
roots1 polynomial roots - Laguerre’s method
polyval polynomial evaluation
polyvalm matrix polynomial evaluation
conv multiplication
deconv division
residue partial-fraction expansion
polyfit polynomial curve fitting

Matrix Manipulation
rot90 rotation
fliplr flip matrix left-to-right
flipud flip matrix up-and-down
diag extract or create diagonal
tril lower triangular part
triu upper triangular part
reshape reshape
.’ transposition
: general rearrangement

86 CHAPTER 9. MATLAB COMMANDS BY FUNCTION

Special Matrices
compan companion
diag diagonal
eye identity
gallery esoteric
hadamard Hadamard
hanke Hankel
hilb Hilbert
invhilb inverse Hilbert
linspace linearly spaced vectors
logspace logarithmically spaced vectors
magic magic square
meshdom domain for mesh plots
ones constant
rand random elements
toeplitz Toeplitz
vander Vandermonde
zeros zero

Matrix Condition
cond condition number in 2-norm
norm 1-norm, 2-norm, F-norm,∞-norm
rank rank
rcond condition estimate

Decompositions and Factorizations
balance balanced form
backsub backsubstitution
cdf2rdf convert complex-diagonal to real-diagonal
chol Cholesky factorizion
eig eigenvalues
hess Hessenberg form
inv inverse
lu factors from Gaussian elimination
nnis nonnegative least-squares
null null space
orth orthogonalization
pinv pseudoinverse
qr orthogonal-triangular decomposition
qz QZ algorithm
rref reduced row echelon form
rsf2csf convert real-schur to complex-schur
svd singular value decomposition

87

Elementary Matrix Functions
expm matrix exponential
logm matrix logarithm
sqrtm matrix square root
funm arbitrary matrix function
poly characteristic polynomial
det determinant
trace trace
kron Kronecker tensor product

Interpolation
spline cubic spline
table1 1-D table look-up
table2 2-D table look-up

Differential Equation Solution
ode23 2nd/3rd order Runge-Kutta method
ode45 4th/5th order Runge-Kutta-Fehlberg method

Numerical Integration
quad numerical function integration
quad8 numerical function integration
Nonlinear Equations and Optimization

fmin minimum of a function of one variable
fmins minimum of a multivariable function

(unconstrained nonlinear optimiztion)
fsolve solution to a system of nonlinear equations

(zeros of a multivariable function)
fzero zero of a function of one variable

Columnwise Data Analysis
max maximum value
min minimum value
mean mean value
median median value
std standard deviation
sort sorting
sum sum of elements
prod product of elements
cumsum cumulative sum of elements
cumprod cumulative product of elements
diff approximate derivatives
hist histogram
corrcoef correlation coefficients
cov covariance matrix
cplxpair reorder into complex pairs

88 CHAPTER 9. MATLAB COMMANDS BY FUNCTION

Chapter 10

Signal Processing Functions by Group

Analog Lowpass Filter Prototypes
buttap Butterworth filter prototype
cheb1ap Chebyshev type I filter prototype (passband ripple)
cheb2ap Chebyshev type II filter prototype (stopband ripple)
ellipap elliptic filter prototype

IIR Filter Design
butter Butterworth filter design
buttord butterworth filter order selection
cheby1 Chebyshev type I filter design
cheby1ord Chebyshev type I filter order selection
cheby2 Chebyshev type II filter design
cheby2ord Chebyshev type II filter order selection
ellip elliptic filter design
ellipord elliptic filter order selection
prony Prony’s time-domain IIR filter design
yulewalk Yule-Walker filter design

FIR Filter Design
fir1 window based FIR filter design - low, high, band, stop
fir2 window based FIR filter design - arbitrary response
remez Parks-McClellan optimal FIR filter design

Filter Transformations
bilinear bilinear transformation with optional prewarping
lp2bp lowpass to bandpass analog filter transformation
lp2bs lowpass to bandstop analog filter transformation
lp2hp lowpass to highpass analog filter transformation
lp2lp lowpass to lowpass analog filter transformation
ss2zp state-space to zero-pole conversion
tf2ss transfer function to state-space conversion
zp2ss zero-pole to state-space conversion

89

90 CHAPTER 10. SIGNAL PROCESSING FUNCTIONS BY GROUP

Filter Analysis/Implementation
abs magnitude
angle phase angle
fftfilt overlap-add filter implementation
filter direct filter implementation
filtfilt zero-phase verson of filter
freqs Laplace transform frequency response
freqz z-transform frequency response
grpdelay group delay
unwrap unwrap phase

Modeling
invfreqs analog filter fit to frequency response
invfreqz discrete filter fit to frequency response
prony Prony’s discrete filter fit to time response

Spectral Analysis
cceps complex cepstrum
detrend linear trend removal
fft discrete Fourier transform
fftshift swap halves of vectors
hilbert Hilbert transform
ifft inverse discrete Fourier transform
rceps real cepstrum and minimum phase reconstruction
specplot plot output of spectrum function
spectrum Welch method of power spectrum estimation

Correlation/Convolution
conv convolution
corrcoef correlation coefficients
cov covariance matrix
deconv deconvolution
xcorr cross-correlation function
xcov covariance function

2-D Signal Processing
conv2 2-D convolution
fft2 2-D discrete Fourier transform
fftshift swap quadrants of arrays
ifft2 inverse 2-D discrete Fourier transform
xcorr2 2-D cross-correlation

Windows
bartlett Bartlett window
blackman Blackman window
boxcar rectangular window
chebwin Chebyshev window
hamming Hamming window
hanning Hanning window
kaiser Kaiser window
triang triangular window

91

Decimation/Interpolation
decimate lowpass FIR decimation
interp lowpass interpolation
spline cubic spline interpolation

Other
convmtx convolution matrix
cplxpair order vector into complex conjugate pairs
dftmtx discrete Fourier transform matrix
polystab polynomial stabilization
square square wave function

	Introduction
	New Features in Version 4

	Essentials of Operating MATLAB
	Overview of Basic Capabilities
	Quick Startup
	Demonstrations
	Help

	Three Windows
	Differences in PC vs. UNIX vs. Mac

	Data, Variables, and Expressions
	Constructing Matrices
	The Data Workspace
	Row & Column Vectors
	Formatting Numbers
	Complex Numbers in Matrices
	The Colon : Operator
	Special Constants
	Text Strings

	Plotting Graphs
	1-D Plotting
	Horizontal Scaling and Labeling
	Two-Dimensional Plotting
	Multiple Plots Per Page
	Controlling the Graphics

	User Interface
	Disk Files
	Importing and Exporting Data
	Diary: Recording a User's Session

	Vectors, Vectors, Everywhere
	Matrix and Array Operations
	Matrix Operations
	Simultaneous Linear Equations
	Element-by-Element Array Operations
	Relational and Logical Operators
	Scalar Math Functions
	Quantization Functions
	Vector Math Functions
	Matrix Functions & Decompositions
	Outer Products
	SubMatrices
	Empty Matrices
	Special Matrices
	Advanced Numerical Functions

	Programming in MATLAB
	Editing ASCII M-files
	Creating Your Own Scripts
	Creating Your Own Functions
	Programming Primitives
	Avoid FOR Loops
	Vectorizing Logical Operations
	Composition of Functions
	Programming Style

	The COLON Operator
	Debugging an M-file
	Version 4 Debugger
	Timing Loops and Functions

	Programming Tips
	Avoid FOR Loops
	Vectorize
	The COLON Operator
	Matrix Operations
	Signal Matrix Convention
	Polynomials
	Self-Documentation via HELP

	Signal Processing in MATLAB
	MATLAB Signal Processing Tool Box
	Version 3 of SP Toolbox
	Signal Vector Convention
	Signal Matrix Convention

	Polynomials in Signals & Systems
	Important Functions for DSP
	Spectrum Analysis: fft & freqz
	A DTFT Function
	Frequency Response: Rational Form
	Windows
	filter
	Filter Design
	Statistical Signal Processing Functions
	Advanced DSP Functions
	Miscellaneous Utility Functions

	Control Toolbox
	Feedback System
	Transfer Functions
	Partial Fractions

	State-Space Representation
	Transfer Functions from State-Space
	Conversion Between Forms
	Digital Control

	Time-Domain Response: Continuous-Time
	Simulated Response of Differential Equation
	Step Response
	Impulse Response
	Ramp Response

	Time-Domain Response: Discrete-Time
	Digital Filtering
	Step Response
	Impulse Response

	Frequency Response
	Bode Plots

	Nyquist Plots
	Root Locus
	Stability Tests

	Linear Quadratic State Estimation
	Optimization Toolbox
	Least-Squares Inverse
	FMINS
	Non-Linear Minimization
	Non-negative Least-Squares
	Linear Programming

	Symbolic Toolbox
	Quick Reference Guide
	Summary of Available Help Screens
	Summary of Frequently Used Commands
	Help Screens for Frequently Used Commands

	MATLAB Commands by Function
	Signal Processing Functions by Group

