CMPE 300 ANALYSIS OF ALGORITHMS MIDTERM ANSWERS

1. a) function Compute (n) sum = 0if (n=0) or (n=1) then return 1 else for i=1 to n-1 do sum = sum + Compute (i) * Compute (i-1) + 1sum = sum + Compute (n-1)return sum endif end Solution of T(n): $T(n) = T(0) + 2[T(1) + T(2) + \dots + T(n-2) + T(n-1)] + (n-1)$ So. $T(n-1) = T(0) + 2[T(1) + T(2) + \dots + T(n-3) + T(n-2)] + (n-2)$ Subtracting the second one from the first, we obtain T(n) = 3T(n-1) + 1Solving by backward substitution, $T(n) = 3^{n-1} + \sum_{l=0}^{n-2} 3^l = 3^{n-1} + \left(\frac{3^{n-1}-1}{2}\right) \in \theta(3^n)$ b) function Compute (n) T[0] = 1T[1] = 1for i=2 to n do T[i] = 0for j=1 to i-1 do T[i] = T[i] + T[j] * T[j-1] + 1endfor T[i] = T[i] + T[i-1]endif return T[n] end $T(n) = \sum_{l=2}^{n} \left[\left(\sum_{j=1}^{l-1} 1 \right) + 1 \right]$

 $T(n) = \sum_{i=2}^{n} i = \frac{n(n-1)}{2} - 1 \in \theta(n^2)$

```
c) function Compute (n) T[0] = 1 \\ T[1] = 1 \\ T[2] = T[0] * T[1] + 2 \\ \text{for } i=3 \text{ to n do} \\ T[i] = T[i-1] + (T[i-1] * T[i-2] + 1) - T[i-2] + T[i-1] \\ \text{endfor} \\ \text{return } T[n] \\ \text{end}
```

$$T(n) = \sum_{k=3}^{n} 1 \in \theta(n)$$

2. Theorem: Given integers n, k, k n, suppose L[1:n] is a list such that every element in the list is no more than k positions from its stable final position in the sorted list L. Then insertion sort performs at most 2k(n-1) comparisons when sorting L[1:n].

First, we will show that, if each element in the list is no more than k positions from its stable final position, then for each $i \in \{2,...,n\}$, there are at most 2k-1 list elements L[j] such that j < i and L[i] < L[j].

Assume to the contrary that there are at least 2k list elements such that j < i and L[i] < L[j]. Then there must exist a list element $L[j_0]$ that is strictly greater than L[i], such that j_0 i-2k. Let i and j_0 denote the stable final positions of L[i] and $L[j_0]$, respectively. By hypothesis, every element in the list L[1:n] is no more than k positions from its stable final position. In particular, j_0 j_0+k (i-2k)+k=i-k, and i i-k. Hence, j_0 i, which implies that $L[j_0]$ L[i], a contradiction.

From the conclusion that there are at most 2k-1 list elements L[j] such that j<i and L[i]< L[j] and the fact that the algorithm iterates n-1 times, the theorem follows.

3.

a)	Visit	Unvisited neighbors	Backtrack
	1	5,6,7,8,9	
	5		to 1
	1 (returned)	6,7,8,9	
	6	3,4,8	
	3	4,7	
	4	8	
	8	9	
	9	2	
	2	10	
	10		to 2
	2 (returned)		to 9
	9 (returned)		to 8
	8 (returned)		to 4
	4 (returned)		to 3

3 (returned)	7	
7		to 3
3 (returned)		to 6
6 (returned)		to 1
1 (returned)		to 5
5 (returned)		to 1
1 (returned)		

So, order of visits: 1,5,6,3,4,8,9,2,10,7

b)	Visit	Unvisited neighbors	Enqueue
	1	5,6,7,8,9	
	5,6,7,8,9		5,6,7,8,9
	5 (dequeue)		
	6 (dequeue)	3,4	3,4
	7 (dequeue)		
	8 (dequeue)		
	9 (dequeue)	2	2
	3 (dequeue)		
	4 (dequeue)		
	2 (dequeue)	10	10
	10 (dequeue)		

So, order of visits: 1,5,6,7,8,9,3,4,2,10

4. We can view the algorithm as having two steps. Let T_1 denote the number of basic operations in the loop and T_2 the number of basic operations in the recursive calls. Then

$$A(n) = E[T] = E[T_1] + E[T_2]$$

Similarly, we can divide the work inside the loop into two parts: Let $T_{1,1}$ be the number of times first basic operation is executed and $T_{1,2}$ the number of times second basic operation is executed. Then

$$E[T_1] = E[T_{1,1}] + E[T_{1,2}] = (n-1) + E[T_{1,2}]$$

We can assume that it is equally likely that L[low] can be any one of the integers 1,...,n. So, the second *print(...)* statement will be executed (n-1) times with probability 1/n, will be executed (n-2) times with probability 1/n, ..., will be executed 0 times with probability 1/n. Thus

$$E[T_{1,2}] = \sum_{l=0}^{n-1} l * \frac{1}{n} = \frac{1}{n} * \frac{n(n-1)}{2} = \frac{n-1}{2}$$

Then, $E[T_1] = \frac{3(n-1)}{2}$. Then, assuming that the *random(...)* command returns any number between 1 and n with equal probability,

$$A(n) = \frac{3(n-1)}{2} + \frac{1}{n} \sum_{i=1}^{n} A(i) + A(n-i+1), A(1)=0$$

$$A(n) = \frac{3(n-1)}{2} + \frac{2}{n}[A(1) + \dots + A(n)]$$

Multiply with n:

$$n(n) = \frac{3n(n-1)}{2} + 2[A(1) + \dots + A(n)]$$

Replace n with n-1:

$$(n-1)A(n-1) = \frac{3(n-1)(n-2)}{2} + 2[A(1) + \dots + A(n-1)]$$

Subtract the second one from the first:

$$n(n) - (n-1)A(n-1) = \frac{6(n-1)}{2} + 2A(n)$$
. Then $(n-2)A(n) = (n-1)A(n-1) + \frac{6(n-1)}{2}$.

Divide both sides to (n-1)(n-2):

$$\frac{A(n)}{n-1} = \frac{A(n-1)}{n-2} + \frac{6}{2(n-2)}$$
. Let $y(n) = \frac{A(n)}{n-1}$. Then

$$y(n) = y(n-1) + \frac{6}{2(n-2)}, y(1)=0$$

When we solve y(n) with backward substitution, we will obtain

$$y(n) = 3 \sum_{l=1}^{n-2} \frac{1}{l} \cong H(n)$$
. Thus,

$$A(n) \cong (n-1)H(n) \in \theta(n)$$
.