CMPE 300 ANALYSISOF ALGORITHMS
MIDTERM ANSWERS

a) function Compute (n)

sum =0

if (n=0) or (n=1) then
return 1

else
fori=1ton-1do

sum = sum + Compute (i) * Compute (i-1) + 1

endfor
sum = sum + Compute (n-1)
return sum

endif

end

Solution of T(n):
T =TO)+2[IT(D+TR)++Tm-2)+T(n—D]+ (-1

So,
Tn—-1D)=TO)+2[T(D)+TR2)+-+Tn-3)+Tn—-2)]|+(n—2)
Subtracting the second one from the first, we obtain

Tn)=3Tn—-1)+1

Solving by backward substitution,
T(m) = 3" 4 RiF gt =301 4 (

'!II—!_-l

Jea@m

£

b) function Compute (n)
T[0]=1
T[1]=1
fori=2tondo
T[i]=0
for j=1toi-1do
Tl =T+ TOH > TH-1] +1
endfor
T[i] = T[i] + T[i-1]
endif
return T[n]
end

T(‘H)=il 2_11 +1

=2 | \ =1

T(n) = Zt = @ — 1€ 8(n)

[ary

=2

c) function Compute (n)
T[0]=1
T[1]=1
T[2] = T[O] * T[1] + 2
for i=3tondo
T[i] = T[i-1] + (T[i-1] * T[i-2] + 1) — T[i-2] + T[i-1]
endfor
return T[n]
end

T(n) = Z 1€ 8(n)

2. Theorem: Given integers n, k, k<n, suppose L[1:n] is a list such that every element in the
list is no more than k positions from its stable final position in the sorted list L. Then
insertion sort performs at most 2k(n-1) comparisons when sorting L[1:n].

First, we will show that, if each element in the list is no more than k positions from its
stable final position, then for each ie{2,...,n}, there are at most 2k-1 list elements L[j]
such that j<i and L[i]<L[j].

Assume to the contrary that there are at least 2k list elements such that j<i and L[i]<L[j].
Then there must exist a list element L[jo] that is strictly greater than L[i], such that jo<i-2k.
Let i" and jo' denote the stable final positions of L[i] and L[jo], respectively. By hypothesis,
every element in the list L[1:n] is no more than k positions from its stable final position.
In particular, jo'<jot+k<(i-2k)+k=i-k, and i"=i-k. Hence, jo'<i’, which implies that L[jo]<L[i],
a contradiction.

From the conclusion that there are at most 2k-1 list elements L[j] such that j<i and
L[i]<L[j] and the fact that the algorithm iterates n-1 times, the theorem follows.

3.
a) Visit Unvisited neighbors Backtrack

1 5,6,7,8,9
5 tol
1 (returned) 6,7,8,9
6 34,8
3 4,7
4 8
8 9
9 2
2 10
10 to 2
2 (returned) --- to 9
9 (returned) --- to 8
8 (returned) --- to4

4 (returned) --- to 3

3 (returned) 7

7 to 3
3 (returned) --- to 6
6 (returned) --- tol
1 (returned) --- to5
5 (returned) --- tol

1 (returned) ---

So, order of visits: 1,5,6,3,4,8,9,2,10,7

b) Visit Unvisited neighbors Enqueue
1 5,6,7,8,9
5,6,7,8,9 5,6,7,8,9
5 (dequeue) ---
6 (dequeue) 3,4 3,4
7 (dequeue) ---
8 (dequeue) ---
9 (dequeue) 2 2
3 (dequeue) ---
4 (dequeue) ---
2 (dequeue) 10 10

10 (dequeue) ---
So, order of visits: 1,5,6,7,8,9,3,4,2,10

4. We can view the algorithm as having two steps. LetT; denote the number of basic
operations in the loop and T, the number of basic operations in the recursive calls. Then

A(n) = E[T] = E[T4]+E[T,]

Similarly, we can divide the work inside the loop into two parts: Let T, ;1 be the number of
times first basic operation is executed and T, » the number of times second basic operation
is executed. Then

E[T1] = E[T11] +E[T12] = (n-1) + E[T1]

We can assume that it is equally likely that L[low] can be any one of the integers 1,..,n.
So, the second print(..) statement will be executed (n-1) times with probability 1/n, will be
executed (n-2) times with probability 1/n, ..., will be executed O times with probability
1/n. Thus

E[Tio] = XS tx- == “(“__1) =

[& £

Then, E[T,] = M Then, assuming that the random(..) command returns any number
between 1 and n with equal probability,

A(r) = "'(“:f” += T, A + A(n -1+ 1), A(1)=0

3(n—1) 2
+ - (A1) + -+ A@)]

A(n) =

2
Multiply with n:
3n(n—1)
n (n)= — +2[A) + -+ A()]

Replace n with n-1:

3(n—1)(n—2) N

m—1DAMn-1) = >

2[A(1) + -+ A(n — 1)]

Subtract the second one from the first:

nm-m-DAn-1) = 5(“ D)

(m—2)A(n) = (n—DA(n - 1) +

+ 2A(r). Then
E-(H 1)

Divide both sides to (n-1)(n-2):

Am) _ An-1) , 6 o Let () = @ Then

f—1 n—2 Z(n—-

ym) =y(n—-1)+ m y(1)=0
When we solve y(n) with backward substitution, we will obtain

y(n) =3X%= ‘% = H(m) . Thus,

Am) = (n—1)HM) € 8(n).

