
CMPE 300 - Analysis of Algorithms
Fall 2014

Assignment 1

Question 1 (40 Points)

1. Write a pseudocode for an efficient algorithm which finds both the largest and second-
smallest element in a list L[1:n] of size n.

2. Find worst-case complexity W(n) and average-case complexity A(n) of the algorithm in (a).
You can assume input is uniformly distributed.

Answer 1

1. Pseudocode: (20 pts) Optimal algorithm is the one that uses a tournament style comparison
of items for finding the second smallest item in a list. Since we are also looking for the largest
element, we can use two functions to calculate them separately and return the results. For
finding the second smallest, think of this input: {1, 2, 5, 12, 0}

0

1

1
1

2

5
5

12

0

Since n is odd, 0 should be compared in the last tournament. The other elements should be
compared 2 by 2, finding the smallest element at each time, and saving it as a parent node, i.e.
adding the larger element to the smaller element’s children list.

In order to find the largest element, we need to compare the elements in the list to the largest
found item in the list so far.

The pseudocode for the algorithm is as follows:

procedure LargestSecondSmallest(L[1:n])
input: L[1:n] (an array of integers with size n)
output: max, smin (largest and second-smallest elements in the list)
max← Largest(L[1:n])
smin← SecondSmallest(L[1:n])

procedure Largest(L[1:n])
input: L[1:n] (an array of integers with size n)



output: max (largest elements in the list)
Set max← L[1]
for i = 2 to n do

if L[i] > max then
max← L[i]

procedure SecondSmallest(L[1:n])
input: L[1:n] (an array of integers with size n)
output: smin (second-smallest elements in the list)
Declare vector children[n]
Declare vector compare as {1, ..., n}
odd← 0
while size(compare) > 1 do

if size(compare) is odd then
odd← 1

Declare vector compare2
for i = 1 to size(compare)− odd, increment i by 2 do

i0← compare[i]
i1← compare[i+ 1]
if L[i0] < L[i1] then

add children[i]← L[i1]
add compare2← i0

else
add children[i+ 1]← L[i0]
add compare2← i1

if odd is 1 then
add compare2← compare[size(compare)]

compare← compare2

min← compare[1]
if size(children[min]) is 0 then

smin← min
else

smin← children[min][1]
for i = 2 to size(children[min]) do

if children[min][i] < smin then
smin← children[min][i]

2. Worst case complexity and average complexity of the algorithm: (20 pts)

W (n) = 2n+ dlog2 ne − 3

A(n) = 2n+ dlog2 ne − 2

The analysis is as follows:

For Largest(L[1:n]) function:

Basic operation is comparison.

The worst case complexity will be n−1, since algorithm loops over n−1 items. Since for every
item a comparison will be made, no matter the item in the list or the list size, average case
complexity of Largest(A[1:n]) is also A(n) = n− 1.



For SecondSmallest(L[1:n]) function:

Worst case complexity anaysis:

Basic operation is comparison.

W (n) = n − 1 (first loop for the tournament for finding the smallest element) + dlog2 ne − 1
(second loop for finding the second-smallest element in children of the smallest element)

Therefore,

W (n) = n+ dlog2 ne − 2

For the tournament, assume n = 2k. The total number of comparisons will be n/2 +n/4 + ...+
n/2k = n− 1.

In order to find the second smallest element, we need to find an element which has lost a match
to the smallest element (winner). There will be at most dke− 1 = dlog2 ne− 1 comparisons for
finding the second smallest in the children of smallest, since there will be at most k children of
the smallest element.

Total worst case complexity:

W (n) = 2n+ dlog2 ne − 3

See text book page: 367-368 for the proof of optimality.

For average case analysis:

The tournament will take n− 1 comparisons, no matter the input.

A(n) = n− 1 + E[T ]

If n is odd and L[n] is the smallest element in the list, there will be only 1 comparison, since
the odd number is compared only at the end to the smallest so far found number, as in our
example input. Otherwise there will be dlog2 ne comparisons for finding the second smallest
element in the children list of the smallest element. Since the input is uniformly distributed:

(a) Assume that the probability of a successful search is p(0 ≤ p ≤ 1)

(b) Assume that it is equally likely that n will be odd as n will be even

(c) Assume that it is equally likely that second-smallest element can be found in any position

E[T ] =
1

2
[
p

n
+
p(n− 1)

n
dlog2 ne] +

1

2
pdlog2 ne

E[T ] =
1

2
p[[

1

n
+ dlog2 ne −

dlog2 ne
n

] + dlog2 ne]

If n→∞ and p = 1

E[T ] = dlog2 ne
A(n) = n− 1 + dlog2 ne

Total average complexity:

A(n) = 2n+ dlog2 ne − 2

Another (not optimal) algorithm for second smallest:



procedure SecondSmallestNE(L[1:n])
input: L[1:n] (an array of integers with size n)
output: smin (second-smallest elements in the list)
if L[1] ≤ L[2] then

Set min← L[1]
Set smin← L[2]

else
Set min← L[2]
Set smin← L[1]

for i = 3 to n do
if L[i] < smin then

if L[i] < min then
smin← min
min← L[i]

else
smin← L[i]

Worst case complexity for SecondSmallestNE(L[1:n]):

There will be 1 comparison made for the first If statement, and 2(n − 2) for the for loop, at
the worst case. Therefore,

W (n) = 2n− 3

Total worst case complexity for LargestSecondSmallest(L[1:n]):

W (n) = 3n− 4

Average complexity for SecondSmallestNE(L[1:n]):

Let Yi be the indicator variable that has value 1 if L[i] is bigger than the second largest element
of {L[j]|1 ≤ j < i}, and 0 otherwise. Then

E[Yi] = Prob[Yi = 1] = Prob[L[i] is the largest or second largest element in L[1..i]] = 1
i
+ 1

i
= 2

i
.

In this algorithm, there is 1 element comparison before the loop and 1 element comparison
(with smin) each iteration of the loop. Furthermore, there is 1 element comparison (with
smin) each iteration of the loop in which L[i] > smin i.e. in which Yi = 1. Thus the expected
number of element comparisons performed is

A(n) = 1 + n− 2 +
n∑

i=3

E[Yi]

A(n) = n− 1 +
n∑

i=3

2

i

A(n) = n+ Θ(log n)

Total average case complexity for LargestSecondSmallest(L[1:n]):

A(n) = 2n+ Θ(log n)− 1

NOTE: Those who have written an algorithm of W (n) = 3n − 4 will be given 15 pts for the
part (1) of the question, because of the efficient part in the question. If your algorithm has
worse than W (n) = 3n− 4 complexity you will get 0 pts for the part (1) of the question.



Question 2 (30 Points)

Find the recurrence relation for the following algorithm:

procedure SplitArMultiplication(A[1:n]) recursive
input: A[1:n] (an array of integers with size n)
output: A[1:n] (array altered by the procedure)
if n = 1 then return
for i = 1 to n/2 do

A[i] := A[i] ∗ A[i+ n/2]

SplitArMultiplication(A[1:n/2])

Answer 2

Assume n to be n = 2i then i = log n, where n >= 2
Relation: (10 pts)

T (n) = T (n/2) + n/2

T (1) = 1

Complexity Analysis: (20 pts)

T (n) = T (n/22) + n/22 + n/2

= T (n/23) + n/23 + n/22 + n/2

= T (n/24) + n/24 + n/23 + n/22 + n/2

= T (n/2i) + n/2i + ...+ n/22 + n/2

= T (1) + n ∗ (1/2logn + ...+ 1/22 + 1/2)

= 1 +O(n) since(1/2logn + ...+ 1/22 + 1/2) < 1

= O(n)

Question 3 (30 Points)

Consider the given function f(n) and determine whether the following cases are true or false. Justify
your answers formally.(Hint: Use Stirling’s Approximation)

f(n) = n3 + n3log(n5 ∗ n!) + n2 (1)

1. f(n) ∈ O(n3) (6 pts)

2. f(n) ∈ o(n3log(n)) (8 pts)

3. f(n) ∈ Ω(n2log(n)) (8 pts)

4. f(n) ∈ Θ(n3log(n)) (8 pts)



Answer 3

We use Stirlings approximation to simplify the term log(n!).

n! ≈
√

2πn
(n
e

)n
(2)

The function f(n) becomes

f(n) = n3 + 5n3log(n) + n3log(n!) + n2

= n3 + 5n3log(n) + n3log(
√

2πn
(n
e

)n
) + n2

= n3 + 5n3log(n) + n3log(
√

2πn) + n4log
(n
e

)
+ n2

= n3 + 5n3log(n) +
1

2
n3log(2πn) + n4log(n)− n4log(e) + n2

= n4log(n)− n4log(e) +
11

2
n3log(n) +

1

2
n3log(2π) + n3 + n2

1. f(n) ∈ O(n3) : False

Solution 1:

limn→∞
f(n)
n3 =∞

f(n) ∈ ω(n3)

Therefore f(n) /∈ O(n3).

Solution 2:

We can directly show that there is no c and n0 such that f(n) ≤ n3. Let’s look at the
term n4(log(n)− log(e)).

n4(log(n)− log(e)) ≤ cn3, ∀n ≥ n0

n(log(n)− log(e)) ≤ c

nlog(n) is a monotonically increasing function and c is constant. For all {c, n0} pairs, there is
an n value, which is greater than n0, which makes n(log(n) − log(e)) > c. We don’t need to
look at other terms.

2. f(n) ∈ o(n3log(n)) : False

Solution 1:

limn→∞
f(n)

n3log(n)
=∞

f(n) ∈ ω(n3log(n))



Therefore f(n) /∈ o(n3log(n)).

Solution 2:

We can directly show that there is no c and n0 such that f(n) < n3. Let’s look at the
term n4log(n).

n4log(n) < cn3log(n), ∀n ≥ n0

n < c

n is a monotonically increasing function and c is constant. For all {c, n0} pairs, there is
an n value, which is greater than n0, which makes n > c. We don’t need to look at other terms.

3. f(n) ∈ Ω(n2log(n)) : True

Solution 1:

limn→∞
f(n)

n2log(n)
=∞

f(n) ∈ ω(n2log(n))

Solution 2:

If we can find c and n0 such that cg(n) ≤ f(n)∀n ≥ n0, then f(n) ∈ Ω(n2log(n)). Con-
sider the term n4(log(n)− log(e)):

cn2log(n) ≤ n4(log(n)− log(e))

c ≤ n2 log(n)−log(e)
log(n)

Let c = 1 for all values of n ≥ 4(n0 = 4). This implies that cg(n) ≤ f(n) since the re-
maining terms of f(n) are positive.

4. f(n) ∈ Θ(n3log(n)) : False

Solution 1:

limn→∞
f(n)

n3log(n)
=∞

f(n) ∈ ω(n3log(n))

Therefore f(n) /∈ Θ(n3log(n)).

Solution 2:



We need to find c1, c2 and n0 such that

c1(n
3log(n)) ≤ f(n) ≤ c2(n

3log(n)) ∀n ≥ n0

Let’s look at the term: n4(log(n)− log(e)):

c1(n
3log(n)) ≤ n4(log(n)− log(e)) ≤ c2(n

3log(n))

c1 ≤ n log(n)−log(e)
log(n)

≤ c2

Since n log(n)−log(e)
log(n)

is an increasing function, as n→∞ it cannot be bounded by a constant c2.
Therefore, we cannot find a c2 value.


